全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复合材料热传导系数均匀化计算的实现方法

, PP. 1581-1587

Keywords: 均匀化,类比方法,复合材料,等效热传导系数,蜂窝夹芯板

Full-Text   Cite this paper   Add to My Lib

Abstract:

均匀化理论可以有效预测周期性结构复合材料的等效热传导系数,然而其控制方程的载荷项形式特殊,通用有限元软件中没有对应的载荷形式,难以直接求解.提出一种本构关系及场变量的类比方法,证明了在此类比下等效热传导系数均匀化方程与等效弹性模量均匀化方程是等价的.根据求解等效弹性模量均匀化方程的热应变法,提出一种新的等效热传导系数均匀化方程数值求解方法.以ABAQUS为平台,预测单向纤维复合材料以及金属蜂窝夹芯板的等效热传导系数,计算结果与参考值吻合良好.该方法为基于通用有限元软件的复合材料等效热传导系数的均匀化计算提供了简便途径.

References

[1]  Benssousan A, Lions J L, Papanicoulau G. Asymptotic analysis for periodic structures [M]. Amsterdam: North-Holland, 1978: 11-22.
[2]  Sanchez-Palencia E. Non-homogenous media and vibration theory [M]. Lecture Notes in Physics, Berlin: Springer-Verlag, 1980: 127.
[3]  Guedes J M, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods [J]. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143-198.
[4]  曹礼群, 崔俊芝. 复合材料拟周期结构的均匀化方法 [J]. 计算数学, 1999, 21(3): 331-344. Cao Liqun, Cui Junzhi. Homogenization method for the quasi-periodic structures of composite materials [J]. Mathematica Numerica Sinica, 1999, 21(3): 331-344.
[5]  宋士仓, 崔俊芝, 刘红生. 复合材料稳态热传导问题多尺度计算的一个数学模型 [J]. 应用数学, 2005, 18(4): 560-566. Song Shicang, Cui Junzhi, Liu Hongsheng. A new model of multiscale computation for steady heat transfer equation of composite materials [J]. Mathematica Applicata, 2005, 18(4): 560-566.
[6]  程耿东, 刘书田. 单向纤维复合材料导热性预测 [J]. 复合材料学报, 1996, 13(1): 78-85. Cheng Gengdong, Liu Shutian. Prediction of thermal conductivity of unidirectional fiber reinforced composites [J]. Acta Materiae Compositae Sinica, 1996, 13(1): 78-85.
[7]  刘书田, 程耿东. 基于均匀化理论的复合材料热膨胀系数预测方法 [J]. 大连理工大学学报, 1995, 35(5): 451-457. Liu Shutian, Cheng Gengdong. Homogenization-based method for predicting thermal expansion coefficients of composite materials [J]. Journal of Dalian University of Technology, 1995, 35(5): 451-457.
[8]  张洪武, 余志兵, 王鲲鹏. 复合材料弹塑性多尺度分析模型与算法 [J]. 固体力学学报, 2007, 28(1): 7-12. Zhang Hongwu, Yu Zhibing, Wang Kunpeng. Multiscale model and algorithm for elasto-plastic analysis of composite materials [J]. Acta Mechanica Solida Sinica, 2007, 28(1): 7-12.
[9]  郑晓霞, 郑锡涛, 缑林虎. 多尺度方法在复合材料力学分析中的研究进展 [J]. 力学进展, 2010, 40(1): 41-56. Zheng Xiaoxia, Zheng Xitao, Gou Linhu. The research progress on multiscale method for the mechanical analysis of composites [J]. Advances in Mechanics, 2010, 40(1): 41-56.
[10]  Yuan Z, Fish J. Toward realization of computational homogenization in practice [J]. International Journal for Numerical Methods in Engineering, 2008, 73(3): 361-380.
[11]  梁 军, 黄富华, 杜善义. 周期性单胞复合材料有效弹性性能的边界力方法 [J]. 复合材料学报, 2010, 27(2): 108-112. Liang Jun, Huang Fuhua, Du Shanyi. Boundary force method to predict effective elastic properties of periodical unit cell composite material [J]. Acta Materiae Compositae Sinica, 2010, 27(2): 108-112.
[12]  Hassani B, Hinton E. A review of homogenization and topology optimization I – homogenization theory for media with periodic structure [J]. Computers & Structures, 1998, 69(6): 707-717.
[13]  Xia Z H, Zhang Y F, Fernand E. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. International Journal of Solid & Structure, 2003, 40(8): 1907-1921.
[14]  王勖成. 有限单元法 [M]. 北京: 清华大学出版社, 2003: 441-446. Wang Xucheng. Finite element method [M]. Beijing: Tsinghua University Press, 2003: 441-446.
[15]  Perrins W T, McKenzie D R, McPhedran R C. Transport properties of regular arrays of cylinders [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1979, 369(1737): 207-225.
[16]  樊卓志, 孙 勇, 彭明军, 等. 基于ANSYS的金属蜂窝板热性能模拟研究 [J]. 航空材料学报, 2012, 32(5): 70-74. Fan Zhuozhi, Sun Yong, Peng Mingjun, et al. Simulation and investigation of thermal performance of metallic honeycomb panel on basis of ANSYS [J]. Journal of Aeronautical Materials, 2012, 32(5): 70-74.
[17]  Swann R T, Pittman C M. Analysis of the effective thermal conductivities of honeycomb-core and corrugated-core sandwich panels, TND-714 [R]. Washington: National Aeronautics and Space Administration, 1961.
[18]  李东辉, 夏新林. 金属蜂窝结构的稳态热性能 [J]. 工程热物理学报, 2008, 29(12): 2094-2096. Li Donghui, Xia Xinlin. Steady thermal performance of metallic honeycomb panels [J]. Journal of Engineering Thermophysics, 2008, 29(12): 2094-2096.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133