Benssousan A, Lions J L, Papanicoulau G. Asymptotic analysis for periodic structures [M]. Amsterdam: North-Holland, 1978: 11-22.
[2]
Sanchez-Palencia E. Non-homogenous media and vibration theory [M]. Lecture Notes in Physics, Berlin: Springer-Verlag, 1980: 127.
[3]
Guedes J M, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods [J]. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143-198.
[4]
曹礼群, 崔俊芝. 复合材料拟周期结构的均匀化方法 [J]. 计算数学, 1999, 21(3): 331-344. Cao Liqun, Cui Junzhi. Homogenization method for the quasi-periodic structures of composite materials [J]. Mathematica Numerica Sinica, 1999, 21(3): 331-344.
[5]
宋士仓, 崔俊芝, 刘红生. 复合材料稳态热传导问题多尺度计算的一个数学模型 [J]. 应用数学, 2005, 18(4): 560-566. Song Shicang, Cui Junzhi, Liu Hongsheng. A new model of multiscale computation for steady heat transfer equation of composite materials [J]. Mathematica Applicata, 2005, 18(4): 560-566.
[6]
程耿东, 刘书田. 单向纤维复合材料导热性预测 [J]. 复合材料学报, 1996, 13(1): 78-85. Cheng Gengdong, Liu Shutian. Prediction of thermal conductivity of unidirectional fiber reinforced composites [J]. Acta Materiae Compositae Sinica, 1996, 13(1): 78-85.
[7]
刘书田, 程耿东. 基于均匀化理论的复合材料热膨胀系数预测方法 [J]. 大连理工大学学报, 1995, 35(5): 451-457. Liu Shutian, Cheng Gengdong. Homogenization-based method for predicting thermal expansion coefficients of composite materials [J]. Journal of Dalian University of Technology, 1995, 35(5): 451-457.
[8]
张洪武, 余志兵, 王鲲鹏. 复合材料弹塑性多尺度分析模型与算法 [J]. 固体力学学报, 2007, 28(1): 7-12. Zhang Hongwu, Yu Zhibing, Wang Kunpeng. Multiscale model and algorithm for elasto-plastic analysis of composite materials [J]. Acta Mechanica Solida Sinica, 2007, 28(1): 7-12.
[9]
郑晓霞, 郑锡涛, 缑林虎. 多尺度方法在复合材料力学分析中的研究进展 [J]. 力学进展, 2010, 40(1): 41-56. Zheng Xiaoxia, Zheng Xitao, Gou Linhu. The research progress on multiscale method for the mechanical analysis of composites [J]. Advances in Mechanics, 2010, 40(1): 41-56.
[10]
Yuan Z, Fish J. Toward realization of computational homogenization in practice [J]. International Journal for Numerical Methods in Engineering, 2008, 73(3): 361-380.
[11]
梁 军, 黄富华, 杜善义. 周期性单胞复合材料有效弹性性能的边界力方法 [J]. 复合材料学报, 2010, 27(2): 108-112. Liang Jun, Huang Fuhua, Du Shanyi. Boundary force method to predict effective elastic properties of periodical unit cell composite material [J]. Acta Materiae Compositae Sinica, 2010, 27(2): 108-112.
[12]
Hassani B, Hinton E. A review of homogenization and topology optimization I – homogenization theory for media with periodic structure [J]. Computers & Structures, 1998, 69(6): 707-717.
[13]
Xia Z H, Zhang Y F, Fernand E. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. International Journal of Solid & Structure, 2003, 40(8): 1907-1921.
[14]
王勖成. 有限单元法 [M]. 北京: 清华大学出版社, 2003: 441-446. Wang Xucheng. Finite element method [M]. Beijing: Tsinghua University Press, 2003: 441-446.
[15]
Perrins W T, McKenzie D R, McPhedran R C. Transport properties of regular arrays of cylinders [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1979, 369(1737): 207-225.
[16]
樊卓志, 孙 勇, 彭明军, 等. 基于ANSYS的金属蜂窝板热性能模拟研究 [J]. 航空材料学报, 2012, 32(5): 70-74. Fan Zhuozhi, Sun Yong, Peng Mingjun, et al. Simulation and investigation of thermal performance of metallic honeycomb panel on basis of ANSYS [J]. Journal of Aeronautical Materials, 2012, 32(5): 70-74.
[17]
Swann R T, Pittman C M. Analysis of the effective thermal conductivities of honeycomb-core and corrugated-core sandwich panels, TND-714 [R]. Washington: National Aeronautics and Space Administration, 1961.
[18]
李东辉, 夏新林. 金属蜂窝结构的稳态热性能 [J]. 工程热物理学报, 2008, 29(12): 2094-2096. Li Donghui, Xia Xinlin. Steady thermal performance of metallic honeycomb panels [J]. Journal of Engineering Thermophysics, 2008, 29(12): 2094-2096.