全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新型轻木GFRP夹芯板拉挤成型工艺及其界面性能

, PP. 1428-1435

Keywords: 拉挤成型工艺,复合材料夹芯板,双悬臂梁试验,裂纹形态,能量释放率

Full-Text   Cite this paper   Add to My Lib

Abstract:

选用无碱玻璃纤维束、短切纤维毡、不饱和树脂与泡桐木芯材,制备了轻木-玻璃纤维增强塑料(GFRP)夹芯板,对其拉挤工艺进行了研究.研究表明:设定模具加热温度(凝胶区)为160℃、选取的拉挤速率为10cm/min时,可制造得到表观性能良好的泡桐木-GFRP夹芯板.通过双悬臂梁(DCB)试验,在芯材表面开槽和不开槽2种情况下,研究了泡桐木与GFRP面层之间的界面黏结性能,并与真空导入工艺制作的夹芯板的界面黏结性能进行了对比.结果表明:拉挤工艺生产的泡桐木-GFRP夹芯板的界面黏结性能已达到甚至优于真空导入工艺生产的.芯材表面开槽可以有效提高试件的界面能量释放率,且对真空导入工艺制作的试件效果更为明显.在拉挤工艺中,树脂难以有效填充齿槽形成"树脂钉",故不能明显提高界面黏结力.在对界面性能要求不严格时,拉挤工艺中芯材表面可不开槽,以减少生产工序、降低生产难度.

References

[1]  刘伟庆, 方 海. 纤维增强复合材料及其在结构工程中的应用研究 [M]. 北京: 中国建筑工业出版社, 2011: 61-73. Liu Weiqing, Fang Hai. Fiber reinforced composites and its application in structural engineering research [M]. Beijing: China Architecture and Building Press, 2011: 61-73.
[2]  方 海, 刘伟庆, 万 里. 新型复合材料快速抢建抢修路面垫板 [J]. 南京工业大学学报: 自然科学版, 2009, 31(1): 92-96. Fang Hai, Liu Weiqing, Wan Li. Innovative composite matting for rapid parking ramp expansion [J]. Journal of Nanjing University of Technology: Natural Science Edition, 2009, 31(1): 92-96.
[3]  Keller T, Rothe J, de Castro J, et al. GFRP-balsa sandwich bridge deck-concept, design and experimental validation [J]. Journal of Composites for Construction, 2013, 18(2): 3-21.
[4]  Rajapakse Y D S. Composites for marine structures [M]. Baltimore: University of Maryland, 2002.
[5]  李文仿, 刘 辉, 方 敏, 等. 玻璃钢拉挤夹芯板成型技术研究 [C]//第十七届玻璃钢/复合材料学术年会论文集. 北京: 中国建筑工业出版社, 2008: 198-200. Li Wenfang, Liu Hui, Fang Min, et al. Technology research of pultrusion process of composite sandwich plates [C]//The 17th academic session of FRP/composite. Beijing: China Architecture and Building Press, 2008: 198-200.
[6]  吴林志, 泮世东. 夹芯结构的设计及制备现状 [J]. 中国材料进展, 2009, 28(4): 40-45. Wu Linzhi, Pan Shidong. Survey of design and manufacturing of sandwich structures [J]. Materials China, 2009, 28(4): 40-45.
[7]  Aviles F, Carlsson L A. Analysis of the sandwich DCB specimen for debond characterization [J]. Engineering Fracture Mechanics, 2008(75): 153-168.
[8]  Du L, Jiao G Q. Indentation study of Z-pin reinforced polymer foam core sandwich structures [J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6-7): 822-829.
[9]  Potluri P, Kusak E, Reddy T Y. Novel stitch bonded sandwich composite st ructures [J]. Composite Structures, 2003, 59(2): 251-259.
[10]  Wang B, Wu L Z, Ma L, et al. Fabrication and testing of carbon fiber reinforced truss core sandich panels [J]. Journal of Materials Science & Technology, 2009, 25(4): 547-550.
[11]  万 里, 刘伟庆, 周 叮, 等. 齿槽增强泡桐木夹层结构界面性能研究 [J]. 南京工业大学学报: 自然科学版, 2010, 32(5): 198-200. Wan Li, Liu Weiqing, Zhou Ding, et al. Experimental study on the interface of grooved paulownia wood sandwich composites [J]. Journal of Nanjing University of Technology: Natural Science Edition, 2010, 32(5): 198-200.
[12]  孙士勇, 王 灿, 陈浩然. 具有短纤维增韧界面的复合材料夹芯梁断裂机制的实验和数值研究 [J]. 复合材料学报, 2011, 28(1): 172-177. Sun Shiyong, Wang Can, Chen Haoran. Study on fracture mechanism for composite sandwich beams with interfacial chopped fiber reinforcement by experimental and numerical method [J]. Acta Materiae Compositae Sinica, 2011, 28(1): 172-177.
[13]  American Society for Testing and Materials. ASTM D5528-01 Standard test method for mode I interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites [S]. West Conshohocken, Pennsylvania, US: ASTM International, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133