全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CaCO3增强马来酸化蓖麻油树脂及其泡沫塑料

, PP. 1383-1393

Keywords: 马来酸化蓖麻油,碳酸钙,增强聚合物,增强泡沫塑料,力学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

以马来酸化蓖麻油(MACO)为主要原料,利用无机矿物碳酸钙(CaCO3)粒子作为增强材料制备了环境友好的CaCO3/MACO复合材料及其泡沫塑料,研究了CaCO3对MACO力学性能、动态力学性能和热稳定性的影响,分析了无机粒子与基体间的界面相互作用.研究结果表明:CaCO3含量及其与MACO基体聚合物间的界面黏结是影响复合材料强度的关键因素.随CaCO3含量增加,CaCO3/MACO复合材料的刚性增加,当CaCO3添加量为60wt%时,复合材料的拉伸和弯曲强度达到最优,分别为26.7MPa和46.2MPa,基本达到部分通用塑料的水平.动态力学和热稳定性分析证明:CaCO3作为增强填料可有效提高蓖麻油基塑料的储存模量、玻璃化转变温度和热分解温度.这些行为归于MACO树脂中的羧基和羰基官能团能与CaCO3发生氢键和配位键合作用,形成良好的界面结合.CaCO3也能增强CaCO3/MACO复合泡沫塑料,当泡沫塑料密度为0.24g/cm3时,加入20wt%的CaCO3,其压缩强度和模量比纯泡沫塑料的分别提高142.0%和211.5%.添加矿物填料可降低材料中石油基原料的用量,降低材料成本,增加复合材料与环境的相容性.

References

[1]  曾汉民.先进材料设计的若干前瞻性思考 [J].材料导报, 2002, 16(4): 1-7. Zeng Hanmin. The front-end think over the advanced materials design [J].Materials Review, 2002, 16(4): 1-7.
[2]  吴素平, 容敏智, 章明秋, 等.大豆油树脂基泡沫塑料的力学性能与生物降解性研究 [J].高分子学报, 2007(10): 993-998. Wu Suping, Rong Minzhi, Zhang Mingqiu, et al. Mechanical performance and biodegradability of the foams derived from soybean oil [J].Acta Polymerica Sinica, 2007(10): 993-998.
[3]  Wu S P, Qiu J F, Rong M Z, et al.Plant oil-based biofoam composites with balanced performance [J].Polymer International, 2009, 58(4): 403-411.
[4]  Qiu J F, Zhang M Q, Rong M Z, et al.Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity [J].Journal of Materials Chemistry A, 2013, 1: 2533-2542.
[5]  Wang H J, Rong M Z, Zhang M Q, et al.Biodegradable foam plastics based on castor oil [J].Biomacromolecules, 2008, 9(2): 615-623.
[6]  Wang H J, Rong M Z, Zhang M Q, et al.Interfacial effects in short sisal fiber/maleated castor oil foam composites [J]. Composite Interfaces, 2008, 15(2-3): 95-110.
[7]  胡 静, 容 腾, 容敏智, 等.蓖麻油基泡沫塑料生物降解分子机制初探 [J].高分子学报, 2014(2): 276-285 Hu Jing, Rong Teng, Rong Minzhi, et al. Molecular mechanism involved in biodegradation of castor oil based plastic foam [J]. Acta Polymerica Sinica, 2014(2): 276-285.
[8]  Lu Y S, Larock R C.Corn oil-based composites reinforced with continuous glass fibers: fabrication and properties [J].Journal of Applied Polymer Science, 2006, 102(4): 3345-3353.
[9]  章明秋, 容敏智, 阮文红.非层状纳米无机粒子/热塑性聚合物复合材料制备方法研究进展 [J].复合材料学报, 2011, 28(5): 1-11. Zhang Mingqiu, Rong Minzhi, Ruan Wenhong.Achievements in manufacturing of non-layered inorganic nanoparticles/thermoplastics polymer composites [J].Acta Materiae Compositae Sinica, 2011, 28(5): 1-11.
[10]  Donnell O, Dweib M A, Wool R P.Natural fiber composites with plant oil-based resin [J].Composites Science and Technology, 2004, 64(9): 1135-1145.
[11]  李瑞欣, 张西正, 郝庆新, 等.微米级煅烧羟基磷灰石/壳聚糖复合膜的制备及性能 [J].复合材料学报, 2013, 30(1): 103-111. Li Ruixin, Zhang Xizheng, Hao Qingxin, et al.Preparation and properties of micro-hydroxyapatite/chitosan composite membrane [J].Acta Materiae Compositae Sinica, 2013, 30(1): 103-111.
[12]  Lu J, Hong C K, Wool R P.Bio-based nanocomposites from functionalized plant oils and layered silicate [J].Journal of Polymer Science Part B, 2004, 42(8): 1441-1450.
[13]  Miyagawaa H, Misraa M, Drzala L T, et al.Novel biobased nanocomposites from functionalized vegetable oil and organically-modified layered silicate clay [J].Polymer, 2005, 46(2): 445-453.
[14]  Urama H, Kuwabara M, Tsujimoto T, et al.Green nanocomposites from renewable resources: plant oil-clay hybrid materials [J].Chemistry of Materials, 2003, 15(13): 2492-2494.
[15]  Tsujimoto T, Uyama H, Kobayshi S.Green nanomomposites from renewnable resources: biodegradable plant oil-silica hybrid coatings [J].Macromolecular Rapid Communications, 2003, 24(12): 711-714.
[16]  Liu Z, Erhan S Z, Xu J Y.Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites [J].Polymer, 2005, 46(23): 10119-10127.
[17]  全国塑料标准化技术委员会物理力学试验方法分会.GB/T 16421-1996 塑料拉伸性能小试样试验方法[S].北京: 中国标准出版社, 1986. Test Method for Plastic Branch of National Technical Committee of Standardization for Physical Mechanics. GB/T 16421-1996 Plastics-determination of tensile properties by use of small specimens [S]. Beijing: Standards Press of China, 1986.
[18]  全国塑料标准化技术委员会塑料树脂产品分会.GB/T 9341-2000 塑料弯曲性能试验方法 [S].北京: 中国标准出版社, 2000. The National Standardization Technical Committee Plastics Plastic Resin Product Branch. GB/T 9341-2000 Plastics-determination of flexural properties [S]. Beijing: Standards Press of China, 2000.
[19]  全国纤维增强塑料标准化技术委员会.GB/T 2571-1995树脂浇铸体冲击试验方法 [S].北京: 中国标准出版社, 1995. The Fiber Reinforced Plastics National Standardization Technical Committee. GB/T 2571-1995 Test method for impact resistance of resin casting body [S]. Beijing: Standards Press of China, 1995.
[20]  轻工业部塑料加工应用科学研究所.GB 8813-88硬质泡沫塑料压缩试验方法 [S].北京: 中国标准出版社, 1988. Ministry of Light Industry Science Research Institute of Plastics Processing and Applications. GB 8813-88 Test method for compression of rigid cellular plastics [S]. Beijing: Standards Press of China, 1995.
[21]  Nielsen E.Simple theory of stress-strain properties of filled polymers [J].Journal of Applied Polymer Science, 1966, 10(1): 97-103.
[22]  周菊兴, 董永祺.不饱和聚酯树脂——生产及应用 [M].北京: 化学工业出版社, 2011: 318. Zhou Juxing, Dong Yongqi. Unsaturated polyester resin-production and application [M]. Beijing: Chemical Industry Press, 2011: 318.
[23]  马之庚, 陈开来.工程塑料手册——应用与测试卷 [M].北京: 机械工业出版社, 2004: 1049. Ma Zhigeng, Chen Kailai. Engineering plastics handbook-application and test [M].Beijing: Mechanical Industry Press, 2004: 1049.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133