全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

格栅夹层梁的热弯曲变形

, PP. 1558-1565

Keywords: 格栅夹层结构,热弯曲,变形,胞元结构分析,传递矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑内部热传导,研究了格栅夹层梁一侧受热后的弯曲变形.认为变形后夹层结构中间腹板无弯曲.利用格栅夹层梁结构上的周期性,通过胞元结构的内力平衡方程和变形协调关系,得到了胞元两端内力和位移的关系.引入传递矩阵,建立了夹层梁内力和变形随温度变化的表达式.应用所建立的模型计算了悬臂格栅夹层梁在其上表面受热后的变形.在格栅夹层梁包含的胞元数量较多、腹板高度较小且厚度与表板厚度相近的情况下,由本文模型计算得到的挠度结果与有限元结果吻合较好.

References

[1]  Myers D E, Martin C J, Blosser M L. Parametric weight comparison of advanced metallic, cream tile, and ceramic blanket thermal protection systems, NASA/TM-2000-210289 [R]. Virginia: Langley Research Center, 2000.
[2]  Briscoe C R, Mantell S C, Davidson J H. Shear buckling in foam-filled web core sandwich panels using a pasternak foundation model [J]. Thin-Walled Structures, 2010, 48(6): 460-468.
[3]  秦 强, 蒋军亮. 金属TPS蜂窝盖板的热梯度诱导变形计算[J]. 装备环境工程, 2011, 8(3): 34-37. Qin Qiang, Jiang Junliang. Calculation of deformation induced by thermal gradient of metallic TPS honeycomb [J]. Equipment Environmental Engineering, 2011, 8(3): 34-37.
[4]  李东辉, 夏新林, 孙凤贤. 气动加热下金属蜂窝板热响应特性数值模拟 [J]. 宇航学报, 2008, 29(6): 2019-2022. Li Donghui, Xia Xinlin, Sun Fengxian. Numerical method for thermal response characteristics of metallic honeycomb sandwich panels under aerodynamic heating [J]. Jouranl of Astronautics, 2008, 29(6): 2019-2022.
[5]  景 丽, 王广飞, 唐绍锋, 等. 金属蜂窝夹芯板辐射导热耦合问题 [J]. 哈尔滨工业大学学报, 2010, 42(5): 827-831. Jing Li, Wang Guangfei, Tang Shaofeng, et al. Radiation and conduction coupling problems of honeycomb sandwich panel [J]. Journal of Harbin Institute of Technology, 2010, 42(5): 827-831.
[6]  杨亚政, 李松年, 杨嘉陵. 高超音速飞行器及其关键技术简论 [J]. 力学进展, 2007, 37(4): 366-382. Yang Yazheng, Li Songnian, Yang Jialing. A review on hypersonic vehicles and key technologies [J]. Advances in Mechanics, 2007, 37(4): 366-382.
[7]  董 葳, 范绪箕. 热防护系统中六角蜂窝腔内的流动换热研究 [J]. 空气动力学学报, 2005, 23(4): 496-500. Dong Wei, Fan Xuji. A numerical study on flow and heat transfer in a hexagonal honeycomb enclosure of TPS [J]. Acta Aerodynamic Sinica, 2005, 23(4): 496-500.
[8]  刘振祺, 梁 伟, 杨嘉陵, 等. MTPS蜂窝夹芯结构传热性能及热应力分析 [J]. 航空学报, 2009, 30(1): 86-91. Liu Zhenqi, Liang Wei, Yang Jialing, et al. Analysis of thermal and mechanical properties of honeycomb structure of MTPS [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 86-91.
[9]  Yao C G, Lu H J, Jia Z H, et al. A study on metallic thermal protection system panel for reusable launch vehicle [J]. Acta Astronautica, 2008, 63(1): 280-284.
[10]  Liu D H, Jin L, Shang X C. Comparisons of equivalent and detailed models of metallic honeycomb core structures with in-plane thermal conductivities [J]. Procedia Engineering, 2012, 31: 967-972.
[11]  纪占玲, 李运泽, 李运华. 高温载荷下金属蜂窝夹芯结构的相变和塑性分析 [J]. 复合材料学报, 2013, 30(6): 168-176. Ji Zhanling, Li Yunze, Li Yunhua. Phase change and plasticity analysis for metal honeycomb sandwich structure under high temperature load [J]. Acta Materiae Compositae Sinica, 2013, 30(6): 168-176.
[12]  刘宝军. 金属蜂窝夹芯板力热耦合作用下的数值模拟 [D]. 哈尔滨: 哈尔滨工程大学, 2011. Liu Baojun. The simulation of metal honeycomb sandwich panel under thermomechanical coupling [D]. Harbin: Harbin Engineering University, 2011.
[13]  李大耀. 一个与蜂窝结构温度分布有关问题的解 [J]. 中国空间科学技术, 1986(4): 17-24. Li Dayao. The exact solution to a problem associated with the distribution of temperature in a honeycomb sandwich [J]. Chinese Space Science and Technology, 1986(4): 17-24.
[14]  Daryabeigi K, Blosser M L, Wurster K E. Displacements of metallic thermal protection system panels during reentry, AIAA-2006-2948 [R]. Virginia: Langley Research Center, 2006.
[15]  郭 霞, 关志东, 刘 遂, 等. 蜂窝夹层修理结构的弯曲性能试验分析 [J]. 复合材料学报, 2013, 30(5): 187-194. Guo Xia, Guan Zhidong, Liu Sui, et al. Test analysis on the flexural performances of repaired honeycomb sandwich structures [J]. Acta Materiae Compositae Sinica, 2013, 30(5): 187-194.
[16]  Romanoff J, Varsta P. Bending response of web-core sandwich plates [J]. Composite Structures, 2007, 81(2): 292-302.
[17]  Xin F X, Lu T J. Analytical modeling of wave propagation in orthogonally rib-stiffened sandwich structures: Sound radiation [J]. Computers and Structures, 2011, 89(5): 507-516.
[18]  范华林, 金丰年, 方岱宁. 格栅结构力学性能研究进展 [J].力学进展, 2008, 38(1): 35-52. Fan Hualin, Jin Fengnian, Fang Daining. Structural mechanics of lattice grids [J]. Advances in Mechanics, 2008, 38(1): 35-52.
[19]  Ma L S, Wang T J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings [J]. International Journal of Solids and Structures, 2003, 40: 3311-3330.
[20]  卢子兴, 郭 宇. 金属泡沫材料力学行为的研究概述 [J]. 北京航空航天大学学报, 2003, 29(11): 978-983. Lu Zixing, Guo Yu. Brief review of studies on the mechanical behavior of metallic foams [J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 978-983.
[21]  鞠 苏, 江大志, 杜 刚, 等. 超轻质全复合材料桁架结构的制备及弯曲特性 [J]. 复合材料学报, 2009, 26(3): 1-6. Ju Su, Jiang Dazhi, Du Gang, et al. Fabrication and flexural characteristics of ultra-lightweight integral composite truss structure [J]. Acta Materiae Compositae Sinica, 2009, 26(3): 1-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133