|
- 2015
SiBNCf/SiBNC陶瓷复合材料抗氧化性能
|
Abstract:
以聚硼硅氮烷(PBSZ)为前驱体, SiBNC纤维(SiBNCf)为增强纤维, 采用前驱体聚合物裂解转化与热压烧结技术相结合的方法制备了SiBNCf /SiBNC陶瓷复合材料。在800~1 500 ℃空气气氛下非等温氧化1~3 h, 研究了SiBNCf/SiBNC的氧化演变机制及氧化动力学行为。采用SEM、 XRD研究了SiBNCf/SiBNC陶瓷复合材料氧化实验前后的微观形貌、 物相, 采用阿基米德体积排水法和三点弯曲测试法分析了复合材料的密度、 孔隙率及力学性能。结果表明: SiBNCf/SiBNC陶瓷复合材料具有优异的抗氧化性能和高温稳定性, 生成的氧化膜能有效阻隔氧气的进入, 并且有效填补了SiBNCf/SiBNC复合材料的裂纹及孔洞缺陷, 具有高温自愈合行为。SiBNCf/SiBNC复合材料氧化后密度提高, 这能大幅度提高其三点弯曲强度, 当密度从1.67 g/cm3提高到1.86 g/cm3时, 气孔率下降41%, 弯曲强度从7.51 MPa提高到26.54 MPa。 Using N-methylpolyborosilazane (PBSZ) as precursor, SiBNC fiber (SiBNCf) as reinforcement fiber, SiBNCf/SiBNC ceramic composites were fabricated by precursor polymer pyrolysis conversion and hot-press sintering method. The evolution of oxidation mechanism and kinetics of oxidation behavior of SiBNCf/SiBNC composites were investigated by non-isothermal oxidation tests under 800-1 500 ℃ for 1-3 h in air. The morphology and phase of SiBNCf/SiBNC ceramic composites before and after oxidation resistance were analyzed by means of SEM and XRD. The density, porosity and mechanical properties of composites were tested by Archimedes drainage volume method and three point bending test method. The results show that SiBNCf/SiBNC ceramic composites possess of outstanding oxidation resistance and high temperature stability. The prepared oxidation film can effectively block the entry of oxygen, and effectively fill the crack in SiBNCf/SiBNC composites and hole defect. The SiBNCf/SiBNC composites possess of high temperature self healing performance.The density of SiBNCf/SiBNC composites can be improved after oxidation, which can enhance the three point bending strength largely. As the density increase from 1.67 g/cm3 to 1.86 g/cm3, porosity decreases by 41%, bending strength inceases from 7.51 MPa to 26.54 MPa. 国家自然科学基金 (90916025); 上海市科委基础研究重点项目(14JC1400100); 中央高校基本科研业务费专项资金(14D110626)
[1] | Boitier G, Darzens S, Chermant J L, et al. Microstructural investigation of interfaces in CMCs[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(10): 1467-1470. |
[2] | Lamouroux F, Bouillon E, Cavalier J C, et al. An improved long life duration CMC for jet aircraft engine applications[J]. High Temperature Ceramic Matrix Composites, 2001: 783-788. |
[3] | Ohnabe H, Masaki S, Onozuka M, et al. Potential application of ceramic matrix composites to aero-engine components[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(4): 489-496. |
[4] | Zhang L T, Cheng L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 2-6 (in Chinese). 张力同, 成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报, 2007, 24(2): 2-6. |
[5] | Opeka M M, Talmy I G, Zaykoski J A.Ocidation-based materials selection for 2 000 ℃+ hypersonic aerosurfaces: theoretical considerations and historical experience[J].Journal of Materials Science, 2004, 39 (19): 5887-5904. |
[6] | Liu D L, Jin Y Z, Deng J G. Oxidation resistance of ultrahigh temperature ceramics[J]. Journal of Ceramics, 2010, 31(1): 152-157 (in Chinese). 刘东亮, 金永中, 邓建国. 超高温陶瓷材料的抗氧化性[J].陶瓷学报, 2010, 31(1): 152-157. |
[7] | Li W. Research progress on carbon fibrous reinforced oxidization-resistant composite[J]. Acta Materiae Compositae Sinica, 2013, 30(Suppl.1): 290-292 (in Chinese). 李炜.碳纤维增强抗氧化复合材料研究进展[J].复合材料学报, 2013, 30(增刊1): 290-292. |
[8] | Liang C H. Application of fiber reinforced ceramic matrix composite materials in aircraft engines abroad[J]. Aeronautical Manufacturing Technology, 2006, 6(3): 40-45 (in Chinese). 梁春华.纤维增强陶瓷基复合材料在国外航空发动机上的应用[J].航空制造技术, 2006, 6(3): 40-45. |
[9] | Baldus H P, Wagner O, Jansen M. Synthesis of advanced ceramics in the systems Si-BN and Si-BNC employing novel precursor compounds[C]//MRS Proceedings. San Francisco: Cambridge University Press, 1992, 271: 821. |
[10] | Li J Q. Study on preparation and reaction mechanism of SiBON materials[D]. Jinan: Shan Dong University, 2012 (in Chinese). 李建权.SiBON材料制备技术及反应机理研究[D]. 济南: 山东大学, 2012. |
[11] | Hao Y K, Xiao J Y. High performance composite materials[M]. Beijing: Chemical Industry Press, 2004: 100-102 (in Chinese). 郝元恺, 肖加余.高性能复合材料学[M]. 北京: 化学工业出版社, 2004: 100-102. |
[12] | Fang Z Y, Cao F, Zhang C R, et al. Progress on high temperature nitride based ceramic wavetransparent materials[J]. Materials Review, 2011, 25(7): 54-57 (in Chinese). 方震宇, 曹峰, 张长瑞, 等.氮化物陶瓷系高温透波材料的研究进展[J]. 材料导报, 2011, 25(7): 54-57. |
[13] | Luo L J, Ge M, Zhang W G. Pyrolysis synthesis of Si-B-C-N ceramics and their thermal stability[J]. Ceramics International, 2013, 39(7): 7903-7909. |
[14] | Duan L, Zhang C R, Bin L, et al. Mechanical properties of unidirectional SiBN fiber reinforced boron nitride matrix composites[J]. Materials Letters, 2012, 68: 222-224. |
[15] | Li S W. Microstructural evolution of the self-healing continuous fiber ceramic composites under simulated environment[D]. Xiamen: Xia Men University, 2008 (in Chinese). 李思维.纤维增韧自愈合碳化硅陶瓷基复合材料的高温模拟环境微结构演变[D].厦门: 厦门大学, 2008. |
[16] | Zuo X Z, Zhang L T, Liu Y S, et al. Oxidation resistance of two dimensional C/SiC composite coated with Si-B-C ceramic[J]. Acta Materiae Compositae Sinica, 2013, 30(3): 101-106 (in Chinese). 左新章, 张立同, 刘永胜, 等.Si-B-C陶瓷涂敷2D C/SiC复合材料的抗氧化性能[J].复合材料学报, 2013, 30(3): 101-106. |
[17] | Lee K N, Fox D, Eldridge J, et al. Upper temperature limit of environmental barrier coatings based on mullite and BSAS[J]. Journal of the American Ceramic Society, 2003, 86(8): 1299-1306. |
[18] | Guo W M, Xiao H N, Tian R Y A. Kinetic model and mechanisms of oxidation of 2D-C/C composite[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 46-52 (in Chinese). 郭伟明, 肖汉宁, 田荣一安. 2D-2C/C 复合材料氧化动力学模型及其氧化机理[J].复合材料学报, 2007, 24(1): 46-52. |
[19] | Muralidharan M N, Pramanik N C, Abraham P A, et al. Crystallization and oxidation resistance properties of boron modified silicon oxycarbides derived from polymeric precursors by sol-gel method[J]. Materials Letters, 2008, 62(17): 2547-2550. |