|
- 2015
利用静电纺丝技术制备纳米黏土/聚乳酸复合纳米纤维与其表征
|
Abstract:
利用静电纺丝技术制备了纳米黏土/聚乳酸(PLA)复合纳米纤维, 并将该复合纳米纤维收集成无纺布薄膜, 采用SEM和TEM观察了复合纳米纤维的微观形貌和结构, 分别利用XRD和TGA测试了复合纳米纤维的结晶行为及热学行为, 并分析了复合纳米纤维薄膜的拉伸力学性能随纳米黏土含量的变化关系。结果表明: 当PLA含量为10wt%、 纳米黏土含量为1wt%、 CHCl3与DMF体积比为3:1溶剂条件下, 所制备的纳米黏土/PLA复合纳米纤维的细度和均匀性均得到改善;XRD测试结果表明, 纳米黏土成功附着在PLA中。TGA和力学测试结果表明, 纳米黏土/PLA复合纳米纤维的热稳定性和力学性能相对于纯PLA纤维有较大幅度提高, 当纳米黏土含量为1wt%时, 其初始分解温度提高了60 ℃, 拉伸强度、 断裂伸长率和弹性模量分别提高了111.3%、 74.9%和20.0%。 The electrospinning technique was used to produce nanoclay/polylactide (PLA) composite nanofibers, and the composite nanofibers were collected into non-woven films. SEM and TEM were used to investigate micromorphology and structure of fiber. XRD and TGA were used to investigate the crystallization and thermal properties, the relationship between the tensile mechanical properties of the composite nanofiber membranes and the contents of the nanoclay was revealed. The results reveal that the fineness and uniformity of the prepared nanoclay/PLA composite nanofibers are improved by 10wt% of PLA, 1wt% of nanoclay, solvent of CHCl3 and DMF(3:1, volume ratio). The inclusion of nanoclay in PLA is confirmed by XRD test results. TGA and mechanical test results show that the thermal stability and mechanical properties of nanoclay/PLA composite nanofibers are markedly improved than those of pure PLA. The initial temperature of heat decomposition increases by 60 ℃ by 1wt% of nanoclay, and tensile strength, elongation at break and elastic modulus increase by 111.3%, 74.9% and 20.0%, respectively. 国家自然科学基金(51303131); 中国纺织工业协会科技指导性项目(2088026)
[1] | Yu L, Petinakis S, Dean K. Green polymeric blends and composites from renewable resources[C]//Macromolecular Symposia. Weinheim: WILEY‐VCH Verlag, 2007, 249(1): 535-539. |
[2] | Ayutsede J, Gandhi M, Sukigara S, et al. Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat[J]. Polymer, 2005, 46(5): 1625-1634. |
[3] | Ali A A, Rutledge G C. Hot-pressed electrospun PAN nano fibers: An idea for flexible carbon mat[J]. Journal of Materials Processing Technology, 2009, 209(9): 4617-4620. |
[4] | Yu L, Cebe P. Crystal polymorphism in electrospun composite nanofibers of poly (vinylidene fluoride) with nanoclay[J]. Polymer, 2009, 50(9): 2133-2141. |
[5] | Lewitus D, McCarthy S, Ophir A, et al. The effect of nanoclays on the properties of PLLA-modified polymers part 1: mechanical and thermal properties[J]. Journal of Polymers and the Environment, 2006, 14(2): 171-177. |
[6] | Wang R, Wang C H. Prediction of tensile strength of flax noil fibers reinforced biodegradable composite[J]. Acta Materiae Compositae Sinica, 2009, 26(1): 43-47 (in Chinese). 王瑞, 王春红. 亚麻落麻纤维增强可降解复合材料的拉伸强度测试[J]. 复合材料学报, 2009, 26(1): 43-47. |
[7] | Zhou Q, Xanthos M. Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides[J]. Polymer Degradation and Stability, 2008, 93(8): 1450-1459. |
[8] | Strange M, Plackett D, Kaasgaard M, et al. Biodegradable polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2008, 92(7): 805-813. |
[9] | Zhang S H, Dong X T, Xu S Z. The preparation and characterized of hollow TiO2/SiO2 composite nanofibers by electrostatic spinning[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 138-143 (in Chinese). 张双虎, 董相廷, 徐淑芝. 静电纺丝技术制备TiO2/SiO2复合中空纳米纤维与表征[J]. 复合材料学报, 2008, 25(3):138-143. |
[10] | Rhim J W, Hong S I, Ha C S. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films[J]. LWT-Food Science and Technology, 2009, 42(2): 612-617. |
[11] | Wang C H, Wang R. Research on flax fiber reinforced polylactide environmental friendly composite[J]. Journal of Donghua University: English Edition, 2006, 23(5): 49-53. |
[12] | Lee S Y, Hanna M A. Preparation and characterization of tapioca starch-poly (lactic acid)-Cloisite NA+ nanocomposite foams[J]. Journal of Applied Polymer Science, 2008, 110(4): 2337-2344. |
[13] | Graham K, Gogins M, Schreuder-Gibson H. Incorporation of electrospun nanofibers into functional structures[C]//International Nonwoven Technical Conference. 2003: 15-18. |
[14] | Mo X M, Xu C Y, Kotaki M, et al. Electrospun P (LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation[J]. Biomaterials, 2004, 25(10): 1883-1890. |
[15] | McCullen S D, Stano K L, Stevens D R, et al. Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi‐walled carbon nanotubes[J]. Journal of Applied Polymer Science, 2007, 105(3): 1668-1678. |
[16] | Masaki M, Yoshimune S, Yoshihiro Y, et al. Manufacturing and functionality of poly lactic acid nano fiber by electro-spinning[C]//Annual Meeting of the Society of Polymer Science, Japan (SPSJ). Yokohama: Society of Polymer Science. 2005, 54(1): 1967. |
[17] | Shen L, Qiao F, Zhang Y Q.The mechanical properties and in vitro degradation of performance of carbon fiber reinforced hydroxyapatite/PLA composite[J]. Acta Materiae Compositae Sinica, 2007, 24(5) : 61-65 (in Chinese). 沈烈, 乔飞, 张宇强. 炭纤维增强羟基磷灰石/聚乳酸复合生物材料的力学性能和体外降解性能[J]. 复合材料学报, 2007, 24(5): 61-65. |
[18] | Wang C H, Wang R, Liu M, et al. Forming technology of flax noil fibers reinforced polylactide biodegradable composites[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 63-67 (in Chinese). 王春红, 王瑞, 刘明, 等. 亚麻落麻纤维/聚乳酸基完全可降解复合材料的成型工艺[J].复合材料学报, 2008, 25(2): 63-67. |