全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

碳纳米管加入方式对碳纤维/环氧树脂复合材料层间性能的影响
Effect of adding method of carbon nanotube on interlaminar property of carbon fiber/epoxy composites

DOI: 10.13801/j.cnki.fhclxb.20140722.001

Keywords: 复合材料,层合板,碳纳米管,碳纤维/环氧树脂预浸料,层间断裂韧性
composites
,laminate,carbon nanotube,carbon fiber/epoxy prepreg,interlaminar fracture toughness

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对碳纤维/环氧树脂预浸料, 对比了直接在树脂中加入碳纳米管(CNTs)后制备预浸料以及将CNTs喷涂在预浸料表面2种CNTs加入方式对CNTs-碳纤维/环氧树脂复合材料层合板I型与II型层间断裂韧性及层间剪切强度的影响。通过对树脂黏度、 固化反应以及玻璃化转变温度的考察, 分析了CNTs含量对树脂性能的影响, 考察了添加方法对CNTs长度与形态的影响。分析了2种CNTs加入方式对CNTs-碳纤维/环氧树脂层合板断裂韧性及层间剪切强度的改善效果与作用规律。结果表明: CNTs的加入使树脂的黏度提高, 固化反应程度下降;2种分散方法对CNTs的长度与形态无明显影响;直接在树脂中加入CNTs对CNTs-碳纤维/环氧树脂复合材料I型与II型层间断裂韧性的提高效果低于在碳纤维/环氧树脂预浸料表面喷涂CNTs的方式, 后者的CNTs利用率较高;由于CNTs团聚及对树脂固化反应的影响, CNTs含量过高会使得其对CNTs-碳纤维/环氧树脂层合板的增韧效果下降。 The carbon fiber/epoxy prepregs modified by carbon nanotube (CNTs) were prepared by two methods, including directly dispersing CNTs in resin and spraying CNTs on surface of the prepregs. Mode I and mode II interlaminar fracture toughness as well as interlaminar shear strength of CNTs-carbon fiber/epoxy composite laminates fabricated by the two different prepregs were evaluated. The viscosity, curing reaction and glass transition temperature of resin were investigated to analyze the influences of CNTs content on resin properties. The length and morphology of CNTs in the two different methods were also compared. The modification effects and reaction law of adding CNTs methods on the interlaminar fracture toughness and interlaminar shear strength were discussed. The results show that the introduction of CNTs in resin causes an increase of resin viscosity and the reduction of curing reaction degree. These two methods have no significant effect on length and morphology of CNTs. For mode I, II interlaminar fracture toughness and interlaminar shear strength of CNTs-carbon fiber/epoxy composite, the improving degree from directly dispersing CNTs in resin is smaller than that from spraying CNTs on surface of carbon fiber/epoxy prepregs. The latter method has high utilization efficiency of CNTs. Moreover, high content of CNTs causes a decline of the toughening effect, resulting from CNTs aggregation and the effect of CNTs on resin curing reaction. 国家"863"计划(2014AA032801)

References

[1]  Shen Z, Bateman S, Wu D Y, et al. The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites[J]. Composites Science and Technology, 2009, 69(2): 239-244.
[2]  Mujika F, Vargas G, Ibarretxe J, et al. Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fiber composites[J]. Composites Part B: Engineering, 2012, 43(3): 1336-1340.
[3]  China Aviation Industry Corporation. HB 7403-96 Test method for mode II interlaminar fracture toughness of carbon fiber-reinforced polymer matrix composites[S]. Beijing: China Aviation Industry Corporation, 1996. 中国航空工业总公司. HB 7403-96 碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法[S]. 北京: 中国航空工业总公司, 1996.
[4]  Partridge I K, Cartié D D R. Delamination resistant laminates by Z-Fiber? pinning: Part I manufacture and fracture performance[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(1): 55-64.
[5]  Ashrafi B, Guan J, Mirjalili V, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes[J]. Composites Science and Technology, 2011, 71(13): 1569-1578.
[6]  Williams J, Graddage N, Rahatekar S. Effects of plasma modified carbon nanotube interlaminar coating on crack propagation in glass epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2013, 54: 173-181.
[7]  American Society for Testing and Materials International. ASTM D 5528-01 Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites[S]. West Conshohocken: ASTM International, 2007.
[8]  Joshi S C, Dikshit V. Enhancing interlaminar fracture characteristics of woven CFRP prepreg composites through CNT dispersion[J]. Journal of Composite Materials, 2012, 46(6): 665-675.
[9]  Lubineau G, Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements[J]. Carbon, 2012, 50(7): 2377-2395.
[10]  Veedu V P, Cao A, Li X, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests[J]. Nature Materials, 2006, 5(6): 457-462.
[11]  Zhang X, Hounslow L, Grassi M. Improvement of low-velocity impact and compression-after-impact performance by z-fibre pinning[J]. Composites Science and Technology, 2006, 66(15): 2785-2794.
[12]  B?ger L, Sumfleth J, Hedemann H, et al. Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1419-1424.
[13]  Kostopoulos V, Baltopoulos A, Karapappas P, et al. Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes[J]. Composites Science and Technology, 2010, 70(4): 553-563.
[14]  Zhu L L, Gu Y Z, Sun Z J, et al. Effects of dispersing methods on the properties of low content of carbon nanotube glass fiber/epoxy resin laminates[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 11-17 (in Chinese). 朱莉莉, 顾轶卓, 孙志杰, 等. 分散方法对低含量碳纳米管玻纤/环氧层板性能的影响[J]. 复合材料学报, 2012, 29(5): 11-17.
[15]  Zhao Y W, Gu Y Z, Li M, et al.Double vacuum assisted resin infusion molding and property of carbon nanotube –glass fiber/epoxy resin laminates[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 13-19 (in Chinese). 赵艳文, 顾轶卓, 李敏, 等. 碳纳米管-玻璃纤维/环氧层板双真空灌注工艺及性能[J]. 复合材料学报, 2011, 28(3): 13-19.
[16]  Thostenson E T, Li W Z, Wang D Z, et al. Carbon nanotube/carbon fiber hybrid multiscale composites[J]. Journal of Applied Physics, 2002, 91(9): 6034-6037.
[17]  Sager R J, Klein P J, Lagoudas D C, et al. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix[J]. Composites Science and Technology, 2009, 69(7): 898-904.
[18]  Laachachi A, Vivet A, Nouet G, et al. A chemical method to graft carbon nanotubes onto a carbon fiber[J]. Materials Letters, 2008, 62(3): 394-397.
[19]  Almuhammadi K, Alfano M, Yang Y, et al. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes[J]. Materials & Design, 2014, 53: 921-927.
[20]  Fiber Reinforced Plastic Standardization Technical Committee. JC/T 773-2010 Fibre-reinforced plastics composite-determination of apparent interlaminar shear strength by short- beam method[S]. Beijing: Standards Press of China, 2010 (in Chinese). 全国纤维增强塑料标准化技术委员会. JC/T 773-2010 纤维增强塑料短梁法测定层间剪切强度[S]. 北京: 中国标准出版社, 2010.
[21]  He Z, Zhang X, Chen M, et al. Effect of the filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites[J]. Journal of Applied Polymer Science, 2013, 129(6): 3366-3372.
[22]  Wang A Z, Chen L, Hou W, et al. Effect of carbon nanotubes incorporation on the cure reaction of epoxy resin detected by DSC [J]. Polymer Materials Science and Engineering, 2007, 23(2): 157-160 (in Chinese). 王安之, 陈龙, 侯薇, 等. 碳纳米管对环氧树脂固化反应和力学性能的影响[J]. 高分子材料科学与工程, 2007, 23(2): 157-160.
[23]  Cole K C, Hechler J J, Noel D. A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 2. Application to a typical system based on bis [4-(diglycidylamino) phenyl] methane and bis (4-aminophenyl) sulfone[J]. Macromolecules, 1991, 24(11): 3098-3110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133