|
- 2015
结构化增韧层增韧RTM复合材料预成型体的渗透特性
|
Abstract:
选用尼龙无纺布(Polyamide Nonwoven Fabric, PNF)作为结构化增韧层, 研究了增韧层的引入对纤维预成型体在树脂传递模塑成型(RTM)工艺过程中渗透特性的影响。结果表明:在径向非饱和流动模式下, 层间增韧预成型体沿纤维方向的渗透率为5.2×10-12 m2, 略低于非增韧预成型体的7.1×10-12 m2, 而沿垂直于纤维方向的渗透率为2.3×10-12 m2, 略高于非增韧预成型体的1.6×10-12m2。此外, 层间增韧预成型体的单向饱和流动渗透率为2.6×10-12 m2, 较非增韧预成型体的1.9×10-11 m2下降了约1个数量级, z 向饱和流动渗透率较非增韧预成型体的1.3×10-13 m2下降至2.5×10-14m2, 同样下降了约1个数量级。对复合材料层间微观形貌的分析结果表明:造成预成型体渗透率下降的主要原因首先是PNF引入至层间之后将阻碍层间树脂的快速流动, 同时增韧层将使层内纤维含量明显升高, 由55.3vol%上升到63.7vol%。 The nylon nonwoven fabric (Polyamide Nonwoven Fabric, PNF) was selected as structural toughening layer to investigate its effect on the permeability of fiber preforms during resin transfer molding (RTM) process. Results show that under unsaturated radial flow pattern, the permeability of the interlaminar toughened preform along the direction of fiber (5.2×10-12 m2) is lower than that of the untoughened preform (7.1×10-12 m2). On the contrary, the permeability of the toughened preform perpendicular to the fiber direction (2.3×10-12 m2) is higher than that of the untoughened preform (1.6×10-12 m2). Moreover, the unidirectional saturated flow permeability of interlaminar toughened preform is 2.6×10-12 m2, which is much lower than that of untoughened preform (1.9×10-11 m2), decreased by an order of magnitude. The z -directional saturated permeability also dramatically decreases from 1.3×10-13 m2 (untoughened preform) to 2.5×10-14 m2, decreased by an order of magnitude. The interlaminar morphology analysis results reveal that the decrease of the permeability of preform mainly results from the inhibition of rapid flow of resin, introduced by PNF as structural layers and the increment of interlaminar fiber contents rising from 55.3vol% to 63.7vol%. 国家自然科学基金(51203144)
[1] | Yi X S. Research and development of advanced composites technology[M].Beijing:National Defense Industry Press, 2006:1-2 (in Chinese). 益小苏.先进复合材料技术研究与发展[M].北京:国防工业出版社, 2006:1-2. |
[2] | Huang Y, Hunston D L, Anthony J K, et al.Mechanisms of toughening thermoset resins[J].Advances in Chemistry, 1993, 233(1):405-425. |
[3] | Thouless M D, Du J, Yee A F.Mechanics of toughening brittle polymers[J].ACS Symposium Series, 2000, 759(5):71-85. |
[4] | Pearson R A. Toughening epoxies using rigid thermoplastic particles[J].Advances in Chemistry, 1993, 233(17):405-425. |
[5] | Gebart B R, Lidstom P.Measurement of inplane permeability of anisotropic fiber reinforcements[J]. Polymer Composites, 1996, 17(1):43-52. |
[6] | Jian K K, Zhang Z G, Gu Y Z, et al.Experimental research of saturated permeability with different fiber stacking states[J]. Acta Materiae Compositae Sinica, 2006, 23(1):32-36 (in Chinese). 简抗抗, 张佐光, 顾轶卓, 等.不同纤维堆积状态下饱和渗透率实验研究[J].复合材料学报, 2006, 23(1):32-36. |
[7] | Chen P, Li H Y, Chen X B.Effect of layers on permeability[J]. Acta Materiae Compositae Sinica, 2001, 18(1):30-33(in Chinese). 陈萍, 李宏运, 陈祥宝. 铺层方式对织物渗透率的影响[J].复合材料学报, 2001, 18(1):30-33. |
[8] | Chen P, Duan Y X, Liang Z Y. Research on the statistical model for the longitudinal permeability of preform[J].Acta Materiae Compositae Sinica, 2004, 21(2):105-110 (in Chinese). 陈鹏, 段跃新, 梁志勇.预成型体纵向渗透率统计模型[J].复合材料学报, 2004, 21(2): 105-110. |
[9] | Kruckenberg T, Paton R. Resin transfer moulding for aerospace structures[M]. Li H Y, translated.Beijing:Aviation Industry Press, 2009:116-142 (in Chinese). 克鲁肯巴赫 T, 佩顿 P.航空航天复合材料结构件树脂传递模塑成形技术[M].李宏运, 译.北京:航空工业出版社, 2009:116-142. |
[10] | Weitzenb?ck J R, Shenoi R A, Wilson P A. Radial flow permeability measurement. Part B: Application[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(6): 797-813. |
[11] | Lee D H, Lee W, Kang M K.Analysis and minimization of void formation during resin transfer molding process[J].Composites Science and Technology, 2006, 66(16):3281-3289. |
[12] | Merotte J, Simacek P, Advani S G.Resin flow analysis with fiber preform deformation in through thickness direction during compression resin transfer molding[J].Composites Part A:Applied Science and Manufacturing, 2010,41(7):881-887. |
[13] | Morren G, Bossuyt S, Sol H.2D permeability tensor identification of fibrous reinforcements for RTM using an inverse method[J].Composites Part A: Applied Science and Manufacturing, 2008, 39(9):1530-1536. |
[14] | Weitzenb?ck J R, Shenoi R A, Wilson P A. Radial flow permeability measurement. Part A: Theory[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(6): 781-796. |
[15] | Yi X S, An X F, Tang B M, et al.Ex-situ formation of periodic interlayer structure to improve significantly the impact damage resistance of carbon laminates[J].Advance Engineering Materials, 2003, 5(10):729-732. |
[16] | Long W, Xu Y H, Yi X S, et al.Preliminary study on resin transfer molding of highly-toughened graphite laminates by ex-situ method[J].Journal of Materials Science, 2004, 39(6):2263-2266. |
[17] | Cheng Q F, Fang Z P, Yi X S, et al."Ex Situ" concept for toughening the RTMable BMI matrix composites, part I: Improving the interlaminar fracture toughness [J].Journal of Applied Polymer Science, 2008, 109(3):1625-1634. |
[18] | Cheng Q F, Fang Z P, Xu Y H, et al.Morphological and spatial effects on toughness and impact damage resistance of PAEK-toughened BMI and graphite fiber composite laminates[J].Chinese Journal of Aeronautics, 2009, 22(1):87-96. |
[19] | Cheng Q F, Fang Z P, Xu Y H, et al.Improvement of the impact damage resistance of BMI/graphite laminates by the ex-situ method[J].High Performance Polymers, 2006, 18(6):907-917. |
[20] | Zhang M, An X F, Tang B M, et al.Phase structure of a toughened epoxy system[J].Acta Materiae Compositae Sinica, 2007, 24(1):13-17 (in Chinese). 张明, 安学峰, 唐邦铭, 等.增韧环氧树脂相结构[J].复合材料学报, 2007, 24(1):13-17. |
[21] | Zhang P, Liu G, Hu X L, et al.Properties of toughened RTM composites by structural toughening layer[J].Acta Materiae Compositae Sinica, 2012, 29(4):1-9 (in Chinese). 张朋, 刘刚, 胡晓兰, 等.结构化增韧层增韧RTM复合材料性能[J].复合材料学报, 2012, 29(4):1-9. |
[22] | Lee D H, Lee W, Kang M K. Analysis and minimization of void formation during resin transfer molding process[J].Composites Science and Technology, 2006, 66(16):3281-3289. |
[23] | Drapier S, Monattea J, Elbouazzaoui O, et al.Characterization of transient through-thickness permeabilities of non crimp new concept (NC2) multiaxial fabrics[J].Composites Part A: Applied Science and Manufacturing, 2005, 36(7):877-892. |
[24] | Markicevic B, Papathanasiou T D.An explicit physics-based model for the transverse permeability of multi-material dual porosity fibrous media[J].Transport in Porous Media, 2003, 53(3):265-280. |
[25] | Ngo N D, Tamma K K.Computational developments for simulation based design: multi-scale physics and flow/thermal/cure/stress modeling, analysis, and validation for advanced manufacturing of composites with complex microstructures[J].Archives of Computational Methods in Engineering, 2003, 10(1-2):3-206. |
[26] | Pierre F, Dominique G, Francois T.Concurrent methods for permeability measurement in resin transfer molding[J].Polymer Composites, 1996, 17(1):149-157. |
[27] | Standtfeld H C, Erninger M, Bickerton S, et al. An experimental method to continuously measure permeability of fiber preform as a function of fiber volume fraction[J].Journal of Reinforcement Plastics and Composites, 2002, 21(10):879-899. |
[28] | Inoue T. Reaction-induced phase decomposition in polymer blends[J].Progress in Polymer Science, 1995, 20(1):119-153. |
[29] | Yi X S, An X F, Tang B M, et al.Toughening composite material lamination board and method for making same:Chinese Patent, 200610099381.9[P].2010-08-04 (in Chinese). 益小苏, 安学锋, 唐邦铭, 等.一种增韧的复合材料层合板及其制备方法:中国, 200610099381.9[P].2010-08-04. |
[30] | Amico S, Lekakon C.An experimental study of the permeability and capillary pressure in resin transfer moulding[J].Composites Science and Technology, 2001, 61(13):1945-1959. |
[31] | Rudd C D, Long A C, Kendall K N, et al.Liquid composite molding technology[M].Wang J H, translated.Beijing:Chemical Industry Press, 2004: 205-235 (in Chinese). 拉德C D, 朗A C, 肯德尔K N, 等.复合材料液体模塑成型技术[M].王继辉, 译.北京:化学工业出版社, 2004:205-235. |
[32] | Hedrick J C, Patel N M, McGrath J E.Toughening of epoxy resin networks with functionalized engineering thermoplastics[J].Advances in Chemistry, 1993, 233(11):293-304. |
[33] | Yi X S, An X F, Tang B M, et al.A method to increase the toughness of laminated composites:Chinese Patent, 01100981.0[P].2001-03-26 (in Chinese). 益小苏, 安学峰, 唐邦铭, 等.一种提高层状复合材料韧性的方法:中国, 01100981.0[P].2001-03-26. |
[34] | An X F, Tang B M, Yi X S, et al.Toughness improvement of carbon laminates by periodic interleaving thin films[J].Journal of Materials Science Letters, 2002, 21(22):1763-1765. |
[35] | Cheng Q F, Fang Z P, Yi X S, et al.Ex-situ concept for toughening the RTMable BMI matrix composites, part II: Improving the compression after impact[J].Journal of Applied Polymer Science, 2008, 108(4):2211-2217. |
[36] | Drapier S, Monattea J, Elbouazzaoui O, et al.Characterization of transient through-thickness permeabilities of non crimp new concept (NC2) multiaxial fabrics[J].Composites Part A:Applied Science and Manufacturing, 2005, 36(7):877-892. |