|
- 2015
天然钙镁矿物质粉填充竹木复合材料热裂解性能
|
Abstract:
制备了不同天然钙镁矿物质粉填充量的竹木复合材料, 采用热重(TG)分析、 裂解-气相色谱-质谱联用(PY-GC/MS)、 Li Chung-Hsiung积分法与Malek法研究了天然钙镁矿物质粉填充竹木复合材料的热裂解性能及热裂解动力学, 并建立了天然钙镁矿物质粉填充竹木复合材料的热裂解模型。结果表明: 天然钙镁矿物质粉热裂解时能够吸收周围的热量, 产生的自由基抑制剂和难热裂解的CaO与MgO都能够抑制竹木复合材料的热裂解;裂解产物中, CO、 CO2及单苯环类芳香族化合物的含量与未填充竹木复合材料的相比均有所降低, 脂肪族化合物含量有所增加。未填充竹木复合材料的热裂解反应模式为随机核化, 每个粒子有1个核;天然钙镁矿物质粉填充竹木复合材料的热裂解反应模式为相界反应、 球形对称。 Bamboo-wood composites with different filling content of Ca and Mg natural mineral powder were prepared, and the thermal pyrolysis performances and pyrolysis kinetics of bamboo-wood composites filled with Ca and Mg natural mineral powder were investigated by thermal gravity (TG) analysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC/MS), Li Chung-Hsiung integral method and Malek method. Then the pyrolysis model of bamboo-wood composites filled with Ca and Mg natural mineral powder was built. The results show that when the pyrolysis of natural mineral powder occurs, the heat around will be adsorbed. Then the pyrolysis of bamboo-wood composites is inhibited by the products of natural mineral powder pyrolysis, such as free radicals inhibitor as well as CaO and MgO which are difficult to pyrolysis. The contents of CO, CO2 and single benzodiazepines aromatic compounds in pyrolysis products decrease compared with those of unfilled bamboo-wood composites, while the content of aliphatic compounds increases. The pyrolysis reaction model of unfilled bamboo-wood composites is random nucleation, each particle has one nuclear, while the pyrolysis reaction model of bamboo-wood composites filled with Ca and Mg natural mineral powder is phase boundary reaction and spherical symmetry. 国家自然科学基金(31370569); 国家林业公益性行业科研重大专项(201204702); 湖南省科技重大专项(2011FJ1006)
[1] | Ahmad M, Kamke F A. Analysis of Calcutta bamboo for structural composite materials: physical and mechanical properties[J]. Wood Science and Technology, 2005, 39(6): 448-459. |
[2] | Yao Y, Wang S R. Kinetic research of Lignin pyrolysis by TGA-FTIR analysis[J]. Journal of Combustion Science and Technology, 2007, 13(1): 50-54 (in Chinese). 姚燕, 王树荣. 基于热红联用分析的木质素热裂解动力学研究[J]. 燃烧科学与技术, 2007, 13(1): 50-54. |
[3] | Hajallgol M R, Howard J B, Longwell J P. Products composition and kinetics for rapid pyrolys is of cellulose[J]. Industrial and Engineering Chemistry Process Design and Development, 1982, 21(3): 457-465. |
[4] | Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomass components[J]. Fuel, 1996, 75(8): 987-998. |
[5] | Wen L H, Wang S R, Luo Z Y. Multicomponent kinetic model of biomass pyrolysis[J]. Journal of Zhejiang University: Engineering Science Edition, 2005, 39(2): 247-251 (in Chinese). 文丽华, 王树荣, 骆仲泱. 生物质的多组分热裂解动力学模型[J]. 浙江大学学报: 工学版, 2005, 39(2): 247-251. |
[6] | Li S, Hart J L, Banyasz J, et al. Real time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817. |
[7] | Shafizadeh F, Lai Y Z, Cintyre C R. Thermal degradation of 6-chloro cellulose and cellulose-zinc chloride mixture[J]. Journal of Applied Polymer Science, 1978, 22(5): 1183-1193. |
[8] | Chen L, Wang Q W, Sui S J. Effects of boron compounds and phosphates on pyrolysis products of lignin by PY-GC-MS method[J]. Journal of Northeast Forestry University, 2007, 12(35): 37-39 (in Chinese). 陈琳, 王清文, 隋淑娟. Py-GC/MS法研究硼及磷化合物对木质素热裂解产物的影响[J]. 东北林业大学学报, 2007, 12(35): 37-39. |
[9] | Wang G, Li A M, Li J F. Devolatilization of PLA investigated by TG/FT-IR PY-GC/MS analysis[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(6): 957-960 (in Chinese). 王刚, 李爱民, 李建丰. 基于TG/FT-IR, PY-GC/MS的聚乳酸塑料热降解研究[J]. 高校化学工程学报, 2009, 23(6): 957-960. |
[10] | Maschio G, Koufopanos C, Lucchess A. Pyrolysis, a promising route for biomass utilization[J]. Bioresource Technology, 1992, 42(3): 219-231. |
[11] | Koufopanos C A, Maschio G, Lucchess A. Kinetic modeling of the pyrolysis of biomass and biomass components[J]. Canadian Journal of Chemical Engineering, 1989, 67(1): 75-84. |
[12] | Sharma R K, Wooten J B, Baliga V L. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11): 1469-1482. |
[13] | Nugroho N, Ando N. Development of structural composite products made from bamboo I: fundamental properties of bamboo zephyr board[J]. Journal of Wood Science, 2000, 46(1): 68-74. |
[14] | Gu D L. The key process and property research of wood-bamboo scrimber[D]. Nanjing: Nanjing Forestry University, 2008 (in Chinese). 顾东兰. 木竹重组材关键工艺及性能研究[D]. 南京: 南京林业大学, 2008. |
[15] | Qrtega A. Some successes and failures of the methods based on several experiments[J]. Thermochimica Acta, 1996, 284(2): 379-387. |
[16] | Koga N, Tanaka H. Conventional kinetic analysis of the thermogravimetric curves for the thermal decomposition of a solid[J]. Thermochimica Acta, 1991, 183(l): 125-136. |
[17] | Li X G, Zheng X, Wu Y Q. Interface control of bamboo fibers/polylactic acid composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 94-98 (in Chinese). 李新功, 郑霞, 吴义强. 竹纤维/聚乳酸复合材料界面调控[J]. 复合材料学报, 2012, 29(4): 94-98. |
[18] | Coast A W, Redfern J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201(4): 68-69. |