|
- 2015
改进的复合材料斜接结构胶层应力半解析法
|
Abstract:
引入微分概念和复合材料铺层刚度分配原则, 形成一种改进的求解复合材料斜面对接结构胶层应力的半解析方法MAM(Modified semi-Analytical Method)。首先, 针对铺层角度及铺层数不一致的情况, 采用有限元法(FEM)平面应变模型对MAM进行验证; 然后, 分别用平均剪应力法、 FEM及MAM预测了复合材料斜接结构的承载能力并与试验值进行对比; 最后, 利用MAM分析工程应用问题, 考虑了被粘结体刚度不匹配及胶层厚度的变化。研究结果表明: MAM适于设计复合材料斜接结构; 采用MAM能得到胶层应力的尖峰值, 且应力分布与FEM计算一致。 Modified semi-analytical method (MAM) was created by applying the concept of differential and rule of composite ply stiffness distribution, which can be used to predict adhesive stress for scarf joints in composite structure. Firstly, validation of MAM was studied through the models of different ply angles and number of plies with finite element method (FEM) 2D plane strain. Then, the load carrying capacity of the composite scarf joints was predicted with average shear stress method, FEM and MAM. At last, MAM was used for analyzing engineering applications which concerned scarf joints with dissimilar modulus of adherends and variation of adhesive thickness. The comparison of results of these methods with the test values demonstrates that MAM is appropriate for designing scarf joints in composite structures, and the peak value of adhesive stress can be obtained with MAM and stress distribution is in accord with FEM calculation. 111计划(B07050); 西北工业大学基础研究基金( JC20110201)
[1] | Du S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. |
[2] | Li D H, Qing G H, Liu Y H. A three-dimentionalsemi-anal y tical model for the composite laminated plates with a stepped lap repair[J]. Comopsite Structures, 2011, 93(7): 1673-1682. |
[3] | Hart-Smith L J. Adhesive-bonded scarf and stepped-lap joints, NASA CR-112237[R]. Washington: NASA, 1973. |
[4] | Harman A B, Wang C H. Improved design methods for scarf repairs to highl y strained composite aircraft structure[J]. Composite Structures, 2006, 75(1): 132-144. |
[5] | Odi R A, Friend C M. An improved 2D model for bonded composite joint[J]. International Journal of Adhesives, 2004, 24(5): 389-405. |
[6] | Gunnion A J, Herszberg I. Parametric study of scarf joints in composite structures[J]. Composite Structures, 2006, 75(1): 364-376. |
[7] | Pinto A M G, Campilho R D S G, de Moura M F S F, et al. Numerical evaluation of three-dimentionalal scarf repairs in carbon-epoxy structures[J]. International Journal of Adhesion & Adhesives, 2010, 30(5): 329-337. |
[8] | Wang C H, Gunnion A J. On the design methodology of scarf repairs to composite laminates[J]. Composites Science and Technology, 2008, 68(1): 35-46. |
[9] | Breitzman T D, Iarve E V, Cook B M, et al. Optimization of a composite scarf repair patch under tensile loading[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(12): 1921-1930. |
[10] | Wang C H, Gunnion A J. Optimum shapes of scarf repairs[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(9): 1407-1418. |
[11] | Neilson S V, Orifici A C, Wang C H. Investigation into optimised composite scarf repairs with practical constrains[C]//28th International Congress of the Areonautical Sciences. Sydney: [s.n.], 2012. |
[12] | Cheng X Q, Yasir B, Hu R W, et al. Study of failure mechanisms in scarf repaired CFRP laminates[J]. International Journal of Adhesion & Adhesives, 2013, 41: 177-185. |
[13] | Guan Z D, Liu S, Guo X, et al. Tensile behavior of scarfing repaired laminates with half-depth damage[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 144-151 (in Chinese). 关志东, 刘遂, 郭霞, 等. 含半穿透损伤层合板挖补修理后的拉伸性能[J]. 复合材料学报, 2013,30(2): 144-151. |
[14] | Herszberg I, Feih S, Gunnion A J, et al. Impact damage tolerance of tension loaded bonded scarf repairs to CFRP laminates[C]//16th International Conference on Composite Materials. Kyoto: [s.n.], 2007. |