全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

不同物相电沉积CNTs对C/SiC复合材料力学性能的影响
Effect of CNTs deposited at different phases on mechanical properties of C/SiC composites

DOI: 10.13801/j.cnki.fhclxb.20140616.002

Keywords: 碳纳米管,电沉积,C/SiC,复合材料,微观结构,力学性能
carbon nanotubes
,electrodeposition,C/SiC,composites,microstructures,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用电沉积法与化学气相渗透(CVI)法将碳纳米管(CNTs)分别引入到碳纤维表面和SiC基体中, 制得了不同物相电沉积CNTs的C/SiC复合材料(CNTs-C)/SiC和C/(CNTs-SiC)。研究了CNTs沉积物相对C/SiC复合材料力学性能的影响, 分析了不同CNTs沉积物相的C/SiC复合材料的拉伸强度及断裂机制。结果表明: 相较于未加CNTs的C/SiC复合材料, CNTs沉积到碳纤维表面的(CNTs-C)/SiC复合材料的拉伸强度提高了67.3%, 断裂功提高了107.2%; 而将CNTs引入到SiC基体中的C/(CNTs-SiC)复合材料的断裂功有所降低, 拉伸强度也仅提高了6.9%, CNTs没有表现出明显的增强增韧效果; C/(CNTs-SiC)复合材料与传统的C/SiC复合材料有相似的断裂形貌特征, 断裂拔出机制类似, 主要为纤维增强增韧, CNTs的作用不明显。 Carbon nanotubes (CNTs) were introduced into carbon fiber surface and SiC matrix through electrodeposition and chemical vapor infiltration (CVI) method. Then the C/SiC composites (CNTs-C)/SiC and C/(CNTs-SiC) with CNTs deposited at different phases were obtained. The effects of CNTs deposition phases on the mechanical properties of C/SiC composites were investigated. The tensile strength and fracture mechanisms of C/SiC composites with CNTs deposited at different phases were studied. The results show that compared with C/SiC composite without the addition of CNTs, the tensile strength of (CNTs-C)/SiC composites with CNTs deposited on the surface of carbon fibers increases by 67.3%, and the work of fracture increases by 107.2%. However, the work of fracture of C/(CNTs-SiC) composites which introducing CNTs into the SiC matrix decreases, and the tensile strength only increases by 6.9%, the CNTs does not show significant strengthening and toughening effects. C/(CNTs-SiC) composites have the similar fracture morphology characteristics of traditional C/SiC composites, and both of them have the similar fracture and pullout mechanisms, mostly for carbon fiber strengthening and toughening, and CNTs does not play a significant role. 国家自然科学基金(51272210, 50902112); 国家级大学生创新创业训练计划(201310699014)

References

[1]  Allouche H, Monthioux M. Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Part 2: Texture and structure[J]. Carbon, 2005, 43(6): 1265-1278.
[2]  Wang Y Q. Preform architectures and mechanical properties of C/SiC composites fabricated by chemical vapor infiltration[D]. Xi'an: Northwestern Polytechnical University, 2009 (in Chinese). 王毅强. CVI-C/SiC复合材料预制体结构与力学性能[D]. 西安: 西北工业大学, 2009.
[3]  Xiong J, Zou Z Q, Tang Z H, et al. Effect of carrier gas on the microstructure of CVI pyrocarbon in C/C composite[J]. Acta Materiae Compositae Sinica, 2004, 21(6): 87-92 (in Chinese). 熊杰, 邹志强, 汤中华, 等. 载气对 C/C 复合材料 CVI 热解炭显微结构的影响[J]. 复合材料学报, 2004, 21(6): 87-92.
[4]  Chen J, Xiong X, Xiao P. The effect of carbon nanotube growing on carbon fibers on the microstructure of the pyrolytic carbon and the thermal conductivity of carbon/carbon composites[J]. Materials Chemistry and Physics, 2009, 116(4): 57-61.
[5]  Wen S Q, Li K Z, Song Q. Influence of in-situ grown carbon nanotubes on carbon fiber on the flexural properties of C/C composites[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 7-13 (in Chinese). 文诗琦, 李克智, 宋强. 碳纤维上原位生长碳纳米管对C/C复合材料弯曲性能的影响[J]. 复合材料学报, 2013, 30(6): 7-13.
[6]  Allouche H, Monthioux M. Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Part 1: Synthesis and morphology[J]. Carbon, 2003, 41(5): 2897-2912.
[7]  Wu H Q, Ding G F, Wang Y C, et al. Interfacial characteristic and reinforcement mechanism of the carbon nanotube/zinc composite[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 88-94 (in Chinese). 吴惠箐, 丁桂甫, 王裕超, 等. 锌基碳纳米管复合材料的界面特性及增强机理[J]. 复合材料学报, 2007, 24(4): 88-94.
[8]  Zhang L T, Cheng L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6 (in Chinese). 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2): 1-6.
[9]  He X B, Yang H, Zhang C R. Review of continuous fiber reinforced ceramic matrix composites[J]. Materials Science & Engineering, 2002, 20(2): 274-278 (in Chinese). 何新波, 杨辉, 张长瑞. 连续纤维增强陶瓷基复合材料概述[J]. 材料科学与工程, 2002, 20(2): 274-278.
[10]  Zou W, Zhang K, Zhang L T. Application of ceramic matrix composite to rocket motor[J]. Journal of Solid Rocket Technology, 2000, 23(2): 60-64 (in Chinese). 邹武, 张康, 张立同. 陶瓷基复合材料在火箭发动机上的应用[J]. 固体火箭技术, 2000, 23(2): 60-64.
[11]  Thostenson E T, Karandikar P G, Chou T W. Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites[J]. Journal of Physics D-Applied Physics, 2005, 38(21): 3962-3965.
[12]  Yu H J, Zhou X G, Zhang W, et al. Properties of carbon nano-tubes-Cf/SiC composite by precursor infiltration and pyrolysis process[J]. Materials and Design, 2011, 32(6): 3516-3520.
[13]  Song Q, Li K Z, Li H L, et al. Grafting straight carbon nanotubes radially onto carbon fibers and their effect on the mechanical properties of carbon/carbon composites[J]. Carbon, 2012, 50(10): 3943-3960.
[14]  Sun K, Yu J S, Zhang C R, et al. In situ growth carbon nanotube reinforced SiCf/SiC composite[J]. Materials Letter, 2012, 66(1): 92-95.
[15]  American Society for Testing and Materials. ASTM D3379-75 Standard test method for tensile strength and young's modulus for high-modulus single-filament materials[S]. West Conshohocken: ASTM International, 1989.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133