全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

纳米铜修饰多壁碳纳米管/石蜡相变驱动复合材料的制备及热性能
Preparation and thermal properties of nano copper decorated multi-walled carbon nanotubes/paraffin composites for phase-change actuation

DOI: 10.13801/j.cnki.fhclxb.20140723.001

Keywords: 复合材料,纳米铜,碳纳米管,石蜡,相变驱动,热分解法
composites
,nano copper,carbon nanotubes,paraffin,phase-change actuation,thermal decomposition method

Full-Text   Cite this paper   Add to My Lib

Abstract:

以油胺为分散稳定剂, 在石蜡中热分解甲酸铜-碳纳米管复合物前驱体, 单步制备了纳米铜修饰多壁碳纳米管(Cu-MWCNTs)/石蜡复合材料。通过XRD、 TEM和DSC对Cu-MWCNTs/石蜡复合材料的物相、 微观形貌及相变行为进行了表征和分析, 并对其热敏性、 热膨胀性和热稳定性及影响因素进行了分析研究。结果表明: 纳米Cu原位沉积在MWCNTs外壁上, 粒径为2~35 nm。与纯石蜡相比, Cu-MWCNTs/石蜡复合材料的相变温度和相变潜热均明显降低。Cu-MWCNTs含量为0.2wt%的Cu-MWCNTs/石蜡复合材料具有较短的升温时间, 体膨胀率降低较小, 且多次加热后稳定性较好, 可作为此类热敏微驱动器的理想材料。 Nano copper decorated multi-walled carbon nanotubes(Cu-MWCNTs)/paraffin composites were synthesized by thermal decomposition of copper(II) formate-carbon nanotubes composite precursor in paraffin using oleylamine as dispersing agent. The phase structure, morphology and phase transition behavior were investigated by means of XRD, TEM and DSC. The thermal sensitivity, thermal expansion, thermal stability and their influencing factors of Cu-MWCNTs/paraffin composites were also studied. The results show that copper nanoparticles of 2-35 nm in size are attached to MWCNTs surface. The phase change temperature and latent heat of Cu-MWCNTs/paraffin composites significantly decrease as compared to that of the paraffin. It is clear that the Cu-MWCNTs/paraffin composites containing 0.2wt% of Cu-MWCNTs are desirable materials for microactuator, with short heating time, small decrease in volume expansibility and excellent thermal stability after being heated for many times. 国家自然科学基金(51201152, 51104131)

References

[1]  Chen L, Xie H, Yu W. Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation[J]. Journal of Materials Science, 2012, 47(14): 5590-5595.
[2]  Chen P, Wu X, Lin J, et al. Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4559-4561.
[3]  Sarl A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27(8-9): 1271-1277.
[4]  Gojny F H, Wichmann M H G, Fiedler B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites[J]. Polymer, 2006, 47(6): 2036-2045.
[5]  Xuan Y M, Li Q. Nano fluid energy transfer theory and application[M].Beijing:Science Press, 2010:98-99(in Chinese). 宣益民, 李强. 纳米流体能量传递理论与应用[M]. 北京: 科学出版社, 2010: 98-99.
[6]  Carlen E T, Mastrangelo C H. Paraffin actuated surface micromachined valves[C]//Shimoyama I. Proceedings of the IEEE International Conference on Microelectromechanical Systems (MEMS). New York, USA: IEEE, 2000: 381-385.
[7]  Liu R L, Bonanno J. Single-use, thermally actuated paraffin valves for microfluidic applications[J]. Sensors and Actuators B, 2004, 98(2): 328-336.
[8]  Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes[J]. Thermochimica Acta, 2009, 488(1-2): 39-42.
[9]  Han Z H, Yang B, Kim S H, et al. Application of hybrid sphere/carbon nanotube particles in nanofluids[J].NanoTechnology, 2007, 18(10): 105701.
[10]  Jha N, Ramaprabhu S. Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids[J]. The Journal of Physical Chemistry C, 2008, 112(25): 9315-9319.
[11]  Xu B, Lou B Y, Ma Q T, et al. Preparation and thermal performance of nano-copper/paraffin phase change composites for actuation[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 124-131 (in Chinese). 徐斌, 楼白杨, 麻琼彤, 等. 纳米铜/石蜡相变驱动复合材料制备及热物理性能[J]. 复合材料学报, 2013, 30(2): 124-131.
[12]  Cha S I, Kim K T, Arshad S N, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17(11): 1377-1381.
[13]  Sarl A, Alkan C, Karaipekli A, et al. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials[J]. Energy Conversion and Management, 2008, 49(2): 373-380.
[14]  Svedberg M, Nikolajeff F. On the integration of flexible circuit boards with hot embossed thermoplastic structures for actuator purposes[J]. Sensors and Actuators A, 2006, 125(2): 534-47.
[15]  Tzitzios V, Georgakilas V, Oikonomou E. Synthesis and characterization of carbon nanotube/metal nanoparticle composites well dispersed in organic media[J]. Carbon, 2006, 44(5): 848-853.
[16]  Zhang D, Tian S, Xiao D. Experimental study on the phase change behavior of phase change material confined in pores[J]. Solar Energy, 2007, 81(4): 653-660.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133