全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

超高分子量聚乙烯纤维复合表面改性及其橡胶基复合材料的力学性能
Compound surface modification of ultra-high molecular weight polyethylene fiber and mechanical properties of its rubber matrix composites

DOI: 10.13801/j.cnki.fhclxb.20140611.003

Keywords: 超高分子量聚乙烯纤维,超声波,铬酸溶液,复合表面改性,复合材料
ultra-high molecular weight polyethylene fiber
,ultrasonic,chromic acid solution,compound surface modification,composites

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对超高分子量聚乙烯(UHMWPE)纤维与基体之间界面结合强度低的问题, 采用超声波结合铬酸溶液氧化的复合工艺对UHMWPE纤维进行表面处理, 并将处理后的纤维加入到天然橡胶(NR)中制备短切UHMWPE纤维/NR复合材料。结果表明: 复合改性工艺可有效增加纤维表面粗糙度及表面含氧官能团含量, 最佳改性工艺条件为: 按照重铬酸钾、 水及浓硫酸的质量比7:12:150配置铬酸溶液, 将含有一定质量UHMWPE纤维的铬酸溶液放入35 ℃的超声波清洗仪中氧化5 min, 其中超声波频率为100 kHz。与纯NR样品相比, 在UHMWPE纤维与NR的质量比为0~6:100范围内, 随着处理后短纤维含量的增加, 复合材料的拉伸强度逐渐减小, 最大损失量达到50%;复合材料的硬度不断增大, 最大增加量达到96%;复合材料的撕裂强度先增大后减小, 在UHMWPE纤维与NR的质量比为5:100时达到最大值, 最大增加量达到49%。 Aiming at the problem of low interfacial adhesion strength between ultra-high molecular weight polyethylene (UHMWPE) fiber and matrix, ultrasonic treatment and chromic acid solution oxidation compound process were used to perform surface modifications of UHMWPE fiber, and the modified fiber was added into natural rubber (NR) to prepare short-cut UHMWPE fiber/NR composites. The results show that the compound modification process could effectively increase the roughness and oxygen-containing group contents on surface of fibers, and the optimum modification conditions are: the chromic acid etching solution is prepared by mixing potassium dichromate, distilled water, and sulfuric acid with 7:12:150 mass ratio, and put the chromic acid solution which is filled with a certain quality UHMWPE fiber into ultrasonic cleaning instrument to oxidize for 5 min at 35 ℃, and the ultrasonic frequency is 100 kHz. Then, the as-prepared fibers were added into NR with mass ratio ranging from 0 to 6:100. Compared with the pure NR samples, with the increase of short fiber content, the tensile strength of composites decreases, mostly by 50%, the hardness increases, mostly by 96%, the tear strength first increases then decreases, and reaches mostly by 49% with mass ratio 5:100 between UHMWPE fibers and NR. 国家自然科学基金(51203080); 浙江省教育厅科研项目(Y201222869); 宁波市自然基金(2012A610092); 宁波大学王宽诚幸福基金

References

[1]  Li F Q, Chen F L, Cen L, et al. Effects of the type and amount of short fiber on the physical properties of short fibers/EPDM composite[J]. China Rubber Industry, 2011, 58(3): 163-166 (in Chinese). 李福强, 陈福林, 岑兰, 等. 短纤维种类和用量对短纤维/EPDM复合材料物理性能的影响[J]. 橡胶工业, 2011, 58(3): 163-166.
[2]  Wang Z L. Formulation technology of short fiber reinforced rubber[J]. Word Rubber Industry, 2001, 28(4): 49-58 (in Chinese). 王作龄. 短纤维补强橡胶配方技术[J]. 世界橡胶工业, 2001, 28(4): 49-58.
[3]  Da W F. Present situation and development of UHMWPE[J]. Advanced Materials Industry, 2011 (9): 17-20 (in Chinese). 达巍峰. 超高分子量聚乙烯纤维产业现状与发展[J].新材料产业, 2011 (9): 17-20.
[4]  He F, Wang Y L, Wan Y Z, et al. Mechanical properties and hybrid effect of 3D braided UHMWPE fiber/carbon fiber/epoxy resin hybrid composites[J]. Acta Materiae Compositae Sinica, 2008, 25(6): 52-58 (in Chinese). 何芳, 王玉林, 万怡灶, 等. 三维编织超高分子量聚乙烯纤维/碳纤维/环氧树脂混杂复合材料力学行为及混杂效应[J]. 复合材料学报, 2008, 25(6): 52-58.
[5]  He F, Wang Y L, Wan Y Z, et al. Friction and wear properties of 3D braided UHMWPE fiber-carbon fiber hybrid reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2009, 26(1): 54-58 (in Chinese). 何芳, 王玉林, 万怡灶, 等. 三维编织超高分子量聚乙烯纤维-碳纤维混杂增强环氧树脂复合材料摩擦磨损性能[J]. 复合材料学报, 2009, 26(1): 54-58.
[6]  Sun Y P. The research on interfacial adhesion between short UHMWPE fiber and natural rubber[D]. Beijing: Beijing University of Chemical Technology, 2012 (in Chinese). 孙亚平. 超高分子量聚乙烯纤维填充天然橡胶复合材料的界面特性研究[D]. 北京: 北京化工大学, 2012.
[7]  He Y, Liang G Z, Lv S H. The surface-treatment of UHMWPE fiber and the study of adhesion[J]. Materials Science and Engineering, 2004, 13(5): 528-530 (in Chinese). 何洋, 梁国正, 吕生华, 等. 超高分子量聚乙烯纤维表面的铬酸处理及表征[J]. 材料科学与工程, 2004, 13(5): 528-530.
[8]  Zhao J C, Liang G Z, Guo Z A, et al. Surface modification of UHMWPE fibers using enzyme as catalyst[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 62-66 (in Chinese). 赵景婵, 梁国正, 郭治安, 等. 生物酶催化UHMWPE纤维表面改性[J]. 复合材料学报, 2004, 21(4): 62-66.
[9]  Sakurai K, Kondo Y, Miyazaki K, et al. Ultrahigh-molecular-weight-polyethylene-fiber. surface treament by electron-beam-irradiation-induced graft polymerization and its effect on adhesion in a styrene-butadiene rubber matrix[J]. Journal of Polymer Science Part B: Physics, 2004, 42(13): 2595-2603.
[10]  Ogawa T, Mukai H, Osawa S J. Surface modification of polyethylene[J]. Journal of Applied Polymer Science, 1999, 71(2): 243.
[11]  Jiang S. The study on mechanieal properties of treated ultrahigh molecular weight polyethylene fibers with argon plasma method of dielectrie barrier diseharge[D]. Shanghai: Donghua University, 2004 (in Chinese). 姜生. 介质阻挡放电氨等离子体处理超高分子量聚乙烯纤维的性能研究[D]. 上海: 东华大学, 2004.
[12]  Du G H, Zhu Z M, Gong X Q. Fundamentals of acoustics[M]. Nanjing: Press of Nanjing University, 2001: 3 (in Chinese). 杜功焕, 朱哲民, 龚秀琴. 声学基础[M]. 南京: 南京大学出版社, 2001: 3.
[13]  Bai X H. Ultrasonic technology and sewage sludge and biodegradable water treatment[J]. Industrial Water Treatment, 2002, 20(12): 8-14 (in Chinese). 白晓慧. 超声波技术与污水污泥及难降解水处理[J].工业水处理, 2002, 20(12): 8-14.
[14]  Huang L. Polymer composites[M]. Beijing: China Light Industry Press, 2001: 1-4 (in Chinese). 黄丽. 聚合物复合材料[M]. 北京: 中国轻工业出版社, 2001: 1-4.
[15]  Zhao G, Zhao L, Xie X J. Technology and market development of ultra-high molecular weight polyethylene fiber[J]. Fiber Composites, 2011, 50(1): 50-56 (in Chinese). 赵刚, 赵莉, 谢雄军. 超高分子量聚乙烯纤维的技术与市场发展[J]. 纤维复合材料, 2011, 50(1): 50-56.
[16]  Lin S P, Han J L, Yeh J T, et al. Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks[J]. European Polymer Journal, 2007, 43(3): 996-1008.
[17]  Zhang C, Zheng S Y. Effect of ultrasonic cavitation and its application[J]. Journal of Water Resources & Water Engineering, 2009, 20(1): 136-138 (in Chinese). 张婵, 郑爽英. 超声空化效应及其应用[J]. 水资源与水工程学报, 2009, 20(1): 136-138.
[18]  Standardization Administration of the People's Republic of China. GB/T 14344-2008 Testing method for tensile of man-made filament yarns[S]. Beijing: Standards Press of China, 2008 (in Chinese). 中国国家标准化管理委员会. GB/T 14344-2008 化学纤维 长丝拉伸性能试验方法[S]. 北京: 国家标准出版社, 2008.
[19]  Standardization Administration of the People's Republic of China. GB/T 528-2009 Rubber, vulcanized or thermoplastic—Determination of stress-strain[S]. Beijing: Standards Press of China, 2009 (in Chinese). 中国国家标准化管理委员会. GB/T 528-2009 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定[S]. 北京: 国家标准出版社, 2009.
[20]  Standardization Administration of the People's Republic of China. GB/T 529-2008 Rubber, vulcanized or thermoplastic—Determination of tear strength[S]. Beijing: Standards Press of China, 2008 (in Chinese). 中国国家标准化管理委员会. GB/T 529-2008 硫化橡胶或热塑性橡胶撕裂强度的测定[S]. 北京: 国家标准出版社, 2008.
[21]  Standardization Administration of the People's Republic of China. GB/T 531-2008 Rubber vulcanized or thermoplastic-Determination of indentation hardness-Part 1: Duromerer method[S]. Beijing: Standards Press of China, 2008 (in Chinese). 中国国家标准化管理委员会. GB/T 531-2008硫化橡胶或热塑性橡胶 压入硬度试验方法 第1部分: 邵氏硬度计法[S]. 北京: 国家标准出版社, 2008.
[22]  Jin J. Study on surface modification of ultra-high molecular weight polyethylene fiber by liquid reagent oxidation with ultrasonic wave treatment[D]. Shanghai: Donghua University, 2010 (in Chinese). 金军. 超声下液态氧化法对超高分子量聚乙烯纤维的表面改性研究[D]. 上海: 东华大学, 2010.
[23]  Zhu M H. Instrumental analysis[M]. Beijing: Higher Education Press, 2004: 300-301 (in Chinese). 朱明华. 仪器分析[M]. 北京: 高等教育出版社, 2004: 300-301.
[24]  Xu S G, Huang G J, Zhou Y H, et al. New pretreatment method of nylon short fibre and its effect on properties of UHMWPE fiber/rubber composites[J]. China Rubber Industry, 2003, 50(1): 5-9 (in Chinese). 许泗贵, 黄国基, 周彦豪, 等. 锦纶短纤维的新预处理方法及其对UHMWPE纤维/橡胶复合材料性能的影响[J]. 橡胶工业, 2003, 50(1): 5-9.
[25]  Tong J, Ma Y H, Jiang M. Effects of the wollastonite fiber modification on the sliding wear behavior of the UHMWPE composites[J]. Wear, 2003, 255(16): 734-741.
[26]  Maitya J, Jacoba C, Dasa C K, et al. Direct fluorination of UHMWPE fiber and preparation of fluorinated and non-fluorinated fiber composites with LDPE matrix[J]. Polymer Testing, 2008, 27(5): 581-590.
[27]  Zhang D W, Wang C S, Wei G. Effects of the quantity of short fiber used on the mixing quality of short-rubber composites materials[J]. China Rubber/Plastics Technology & Equipment, 2012, 38(1): 26-28 (in Chinese). 张德伟, 汪传生, 卫光. 短纤维用量对短纤维-橡胶复合材料混炼质量的影响[J]. 橡胶技术与装备, 2012, 38(1): 26-28.
[28]  Xia Z L, Luo Z, Lou J F, et al. Complex modification of aramid fiber surface and its natural rubber composite performance[J]. Modern Chemical Industry, 2013, 33(10): 86-90 (in Chinese). 夏忠林, 罗筑, 娄金分, 等. 芳纶纤维表面的络合改性及其天然橡胶复合材料性能的研究[J]. 现代化工, 2013, 33(10): 86-90.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133