|
- 2015
化学沉淀法制备S-FeS/介孔碳复合材料及其电化学性能
|
Abstract:
为提高锂硫电池的循环性能, 采用化学沉淀法制备了负载有FeS的介孔碳(MC)复合材料FeS/MC, 通过热复合获得了负载S的MC复合材料S/MC和负载S、FeS的MC复合材料S-FeS/MC。FeS/MC的SEM照片表明, FeS可充填MC表面的孔洞。N2吸脱附等温线表明, 负载FeS后, MC的比表面积大幅下降, 但平均孔径增大。XRD谱图表明, 当负载FeS的含量达到20wt%时, 出现了Fe3S4晶相。电化学性能测试结果表明:负载于MC中的FeS本身没有电化学活性, 但它对多硫离子的氧化还原过程有催化作用, 提高了电极的可逆性; S-FeS/MC的二次放电比容量保持率高于S/MC的比容量保持率, 表现出较轻的"飞梭效应"; S-FeS/MC的二次放电比容量为1 108.8 mA·h/g, 50次循环容量保持率为43.7%, 高于S/MC的容量保持率, 表现出较好的循环性能。 In order to improve the cycle performance of lithium sulphur battery, chemical precipitation was adopted to prepare FeS immobilized mesoporous carbon (MC) composites FeS/MC. S immobilized MC composites S/MC and S-FeS immobilized composites S-FeS/MC were prepared by hot mixing. The SEM photographs show that holes on the surface of MC are filled by FeS; N2 adsorption-desorption isotherms indicate that after the immobilization of FeS, the specific area of MC decreases greatly, while the average diameter of holes increases. XRD patterns show that when the content of immobilized FeS reaches 20wt%, Fe3S4 phase appears. Electrochemical test results show that although FeS immobilized in MC shows no electrochemical activity, it has catalytic effect in the redox process of polysulfides, thus enhances the reversibility of cathode. The retention rate of 2nd specific discharge capacity of S-FeS/MC is higher than that of S/MC, and shows the lighter "shuttle effect". 2nd specific discharge capacity of S-FeS/MC is 1 108.8 mA·h/g, and the capacity retention rate after 50 cycles is 43.7%, which is higher than the capacity retention of S/MC, and shows superior cycle performance. 国家基础科学人才培养基金(J1103303)
[1] | Scott E, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2013, 46(5): 1135-1143. |
[2] | Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. Journal of the Electrochemical Society, 2004, 151(11): A1969-A1976. |
[3] | Ling F, Lin Q L, Yuan B, et al. Reduced graphene oxide wrapped FeS nanocomposites for lithium-ion battery anode with improved performance[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 5330-5335. |
[4] | Feng X, He X M, Pu W H, et al. FeS2 cathode materials for lithium batteries[J]. Progress in Chemistry, 2008, 20(2-3): 396-403 (in Chinese). 冯旭, 何向明, 蒲薇华, 等. 锂电池正极材料FeS2[J]. 化学进展, 2008, 20(2-3): 396-403. |
[5] | Yuan X, Liu Y Y, Zhou S P, et al. Synthesis of ordered mesoporous carbon and its application in aqueous macromolecular adsorption[J]. Acta Chimica Sinica, 2007, 65(17): 1814-1820 (in Chinese). 袁勋, 柳玉英, 禚淑萍, 等. 有序介孔炭的合成及液相有机大分子吸附性能的研究[J]. 化学学报, 2007, 65(17): 1814-1820. |
[6] | Wang W K, Yu Z B, Yuan K G, et al. Key materials of high energy lithium suifur batteries[J]. Progress in Chemistry, 2011, 23(2-3): 540-546 (in Chinese). 王维坤, 余仲宝, 苑克国, 等. 高比能锂硫电池关键材料的研究[J]. 化学进展, 2011, 23(2-3): 540-546. |
[7] | Manthiram A, Fu Y Z, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. |
[8] | Akridge J R, Mikhaylik Y V, White N. Li/S fundamental chemistry and application to high-performance rechargeable batteries[J]. Solid State Ionics, 2004, 175(1-4): 243-245. |
[9] | Zhang S S. New insight into liquid electrolyte of rechargeable lithium/sulfur battery[J]. Electrochimica Acta, 2013, 97(5): 226-230. |
[10] | Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
[11] | Lai C, Gao X P, Zhang B, et al. Synthesis and electrochemical performance of sulfur/highly porous carbon composites[J]. The Journal of Physical Chemistry C, 2009, 113(11): 4712-4716. |
[12] | Ahna W, Kim K B, Jung K N, et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithiumsulfur batteries[J]. Journal of Power Sources, 2012, 202(3): 394-399. |
[13] | Cheon S E, Choi S S, Han J S, et al. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode[J]. Journal of the Electrochemical Society, 2004, 151(12): A2067-A2073. |
[14] | Yang Y Z, Liu W F, Guo M C, et al. Preparation and electrochemical property of MnO2/carbon microsphere composite[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 149-155 (in Chinese). 杨永珍, 刘伟峰, 郭明聪, 等. MnO2/CMSs 复合材料的制备及其电化学性能[J]. 复合材料学报, 2011, 28(4): 149-155. |
[15] | Liu H, Yue X, Liu J D. Effect of montmorillonite on the performance of mesoporous carbon/sulfur composite electrode[J]. Battery Bimonthly, 2012, 42(4): 186-188 (in Chinese). 刘慧, 岳鑫, 刘景东. 蒙脱石对介孔炭复合硫正极性能的影响[J]. 电池, 2012, 42(4): 186-188. |
[16] | Chen L, Liu J D, Zhang S Q. Preparation of mesoporous carbon/sulfur composite loaded with ZnS and its property for lithium-sulfur batteries[J]. Journal of Inorganic Materials, 2013, 28(10): 1127-1131 (in Chinese). 陈龙, 刘景东, 张诗群. 负载ZnS的介孔炭复合正极材料的制备及性能研究[J]. 无机材料学报, 2013, 28(10): 1127-1131. |
[17] | Liu J D, Zhang S Q, Yang S B, et al. Phosphazene groups modified sulfur composites as active cathode materials for rechargeable lithium/sulfur batteries[J]. Ionics, 2013, 19(11): 1477-1482. |
[18] | Zhang D, Mai Y J, Xiang J Y, et al. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity[J]. Journal of Power Sources, 2012, 217(11): 229-235. |