全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

考虑纤维体积含量变化的纤维缠绕厚壁柱形结构的等强度设计
Constant strength design of filament wound thick-walled cylindrical structure considering variation of fiber volume content

DOI: 10.13801/j.cnki.fhclxb.20140725.001

Keywords: 纤维缠绕,厚壁容器,纤维体积含量,纤维层应力,失效准则,强度比
filament wound
,thick-walled vessel,fiber volume content,stress of fiber layer,failure criteria,strength ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

纤维缠绕厚壁柱形管道或容器在缠绕张力作用下会使缠绕纤维层的应力状态不断变化, 形成沿壁厚力学性能非均匀的结构。依据缠绕过程中的纤维束应力状态分析和纤维束本构关系, 获得了纤维体积含量与所受应力状态的关系。基于正交各向异性本构关系和双层筒模型的离散叠加法, 建立了给定缠绕张力确定纤维缠绕厚壁柱形结构剩余张力的计算方法, 并计算了等张力缠绕纤维层的纤维体积含量沿壁厚的分布。利用Tsai-Wu失效准则研究了纤维体积含量非均匀的厚壁柱形结构的纤维层强度。研究表明: 缠绕工艺使内层纤维体积含量和强度均略高于外层, 纤维缠绕厚壁柱形结构的强度分析和设计时应考虑这种影响; 利用变化的缠绕张力设计可以实现强度比沿壁厚的均匀分布。 In filament wound thick-walled cylindrical pipe or vessel, the winding tension makes stress state of fiber layer change, which forms a non-uniform structure through thickness. According to the analysis of stress state and constitutive relation of fiber bundle in winding process, the relationship between the fiber volume content and the stress state was obtained. Based on the orthotropic constitutive relations and discrete superposition method of a double layered cylinder model, a calculation method to determine the residual tension for given winding tension in filament wound thick-walled cylindrical structure was established, where the distribution of fiber volume content through wall thickness was calculated for a constant winding tension. Using Tsai-Wu failure criteria, the strength of filament layer was investigated in thick-walled cylindrical structure with non-uniform fiber volume content. It is found that winding process makes the fiber volume content and strength of inner layer higher than those of the outer layer, where the influence of non-unform material property should be considered in analyzing and designing of filament wound thick-walled cylindrical structure. Uniform distribution of strength through thickness can be achieved by design of variational winding tension. 国家自然科学基金(11372220);天津市应用基础与前沿技术研究计划一般项目(14JCYBJC19200)

References

[1]  Chamis C C, Abumeri G H. Simulated data for high temperature composite design[J]. Composites Science and Technology, 2006, 66(14): 2395-2401.
[2]  Cai Z, Gutowski T. The 3-D deformation behavior of a lubricated fiber bundle[J]. Journal of Composite Materials,1992, 26(8): 1207-1237.
[3]  Wang S W. Establishment of tension formulas for composite winding[C]//Mao T X. Current Situation and Development of Composite Materials: Collection of 11th National Conference on Composite Materials. Hefei: University of Science and Technology of China Press. 2000: 824-828(in Chinese). 王树位. 复合材料缠绕张力公式建立[C]//毛天祥. 复合材料的现状与发展: 第十一届全国复合材料学术会议论文集. 合肥: 中国科学技术大学出版社, 2000: 824-828.
[4]  Ding B G, Yang F J. Study of winding tension formlas[J]. Fiber Reinforced Plastics, 2000(6): 3-7(in Chinese). 丁保庚, 杨福江. 缠绕张力公式的研究[J]. 玻璃钢, 2000(6): 3-7.
[5]  Gao F, Yao M. Effect of fibre volume fraction on tensile strength of fibre reinforced composite material[J]. Journal of Northwest Institute of Textile Science and Technology, 2001, 15(2): 275-279(in Chinese). 高峰, 姚穆. 纤维含量对纤维增强复合材料断裂强度的影响[J]. 西北纺织工学院学报, 2001, 15(2): 275-279.
[6]  Chen R X. Netting analysis method for the filament-wound case design[J]. Journal of Solid Rocket Technology, 2003, 26(1): 30-32(in Chinese). 陈汝训. 纤维缠绕壳体设计的网格分析方法[J]. 固体火箭技术, 2003, 26(1): 30-32.
[7]  Ren M F, Zheng C L, Chen H R. Iterative search for the isotension design of the band wound vessels with liner[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 153-158(in Chinese). 任明法, 郑长良, 陈浩然. 具有内衬的缠绕容器缠绕层等张力设计的迭代搜索[J]. 复合材料学报, 2004, 21(5): 153-158.
[8]  Tabakov P Y, Summers E B. Lay-up optimization of multilayered anisotropic cylinders based on a 3-D elasticity solution[J]. Computers and Structures, 2006, 84(5-6): 374-384.
[9]  Mertiny P, Ellyin F. Influence of the filament winding tension on physical and mechanical properties of reinforced composites[J]. Composites Part A:Applied Science and Manufacturing, 2002, 33(12): 1615-1622.
[10]  Yang J C, Chen L, Li J L. Tension of non-resin winding cylinder tube[J]. Journal of Tianjin Polytechnic University, 2006, 25(6): 1-4(in Chinese). 杨金纯, 陈利, 李嘉禄. 干纱缠绕圆柱壳体的缠绕张力[J]. 天津工业大学学报, 2006, 25(6): 1-4.
[11]  Chen R X. Structure analysis for filament wound cylinder pressure [J]. Journal of Solid Rocket Technology, 2004, 27(2): 105-107(in Chinese). 陈汝训. 纤维缠绕圆筒压力容器结构分析[J]. 固体火箭技术, 2004, 27(2): 105-107.
[12]  Xing J Z, Chen L. Strength of filament wound thick-walled cylindrical vessel under internal and external pressure[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 124-131(in Chinese). 邢静忠, 陈利. 内外压作用下纤维缠绕厚壁柱形容器的强度[J]. 复合材料学报, 2011, 28(1): 124-131.
[13]  Xing J Z, Chen L. Stress and deformation of filament-wound thick cylinder vessel under internal and external pressure[J]. Journal of Solid Rocket Technology, 2009, 32(6): 680-685(in Chinese). 邢静忠, 陈利. 纤维缠绕厚壁柱形容器的应力和变形[J]. 固体火箭技术, 2009, 32(6): 680-685.
[14]  Zhang Z M. Mechanics of composite materials [M]. Beijing: Beihang University Press, 1993: 123-142(in Chinese). 张志民. 复合材料结构力学[M]. 北京: 北京航空航天大学出版社, 1993: 123-142.
[15]  Cai W L. Composite materials design[M]. Beijing: Science Press, 1989: 380-382 (in Chinese). 蔡为仑. 复合材料设计[M]. 北京: 科学出版社,1989: 380-382.
[16]  Yi X S, Du S Y, Zhang L T. Composite materials manual[M]. Beijing: Chemical Industry Press, 2009: 406-420 (in Chinese). 益小苏, 杜善义, 张立同. 复合材料手册[M]. 北京: 化学工业出版社, 2009: 406-420.
[17]  Cohen D. Influence of filament winding parameters on composite vessel quality and strength[J]. Composite Part A: Applied Science and Manufacturing, 1997, 28(12): 1035-1047.
[18]  Sung K H, Geoge S S. Nonlinear elastic properties of organic matrix composites at elevated temperatures[J]. Transactions of Thesis, 1988,110(2): 13-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133