全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

复合材料带缠绕成型工艺参数耦合机制及优化
Mechanism and optimization of process parameters coupling for composite tape winding

DOI: 10.13801/j.cnki.fhdxb.20150609.003

Keywords: 复合材料,缠绕成型,工艺参数,响应面法,参数优化
composites
,winding process,process parameters,response surface methodology,parameter optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于复合材料缠绕成型工艺过程研究, 分别对成型过程中紧密接触与自粘接过程进行理论分析, 提出影响复合材料缠绕制品质量的关键工艺参数: 缠绕温度、缠绕压力和缠绕张力;以层间剪切强度(ILSS)为优化目标, 根据响应面法Box-Behnken Design(BBD)原理设计实验, 建立工艺参数耦合对剪切强度的回归模型, 通过对残差、方差(ANVOA)、预测值与实际值对比等检验分析, 验证回归模型的可靠性及有效性, 进而获得缠绕成型最优工艺参数。结果表明: 在最优工艺参数作用下, 层间剪切强度达到22.9 MPa, 缠绕制品结合强度最高。 The theoretical analysis of intimate contact and autohesion in molding process was carried out based on the research of composite winding process. The key process parameters affecting the quality of winding product, such as winding temperature, pressure and tension, were proposed. Based on Box-Behnken Design (BBD) theory of response surface methodology, the regression model of process parameters coupling on shear strength was established to optimize the interlaminar shear strength (ILSS). The reliability and effectiveness of regression model were verified through the test analysis such as residual, analysis of variance (ANVOA) and predicted versus actual. Furthermore, the optimal process parameters of winding process were obtained. Results illustrate that the winding products employing the optimum parameters bond in the highest strength with the interlaminar shear strength of 22.9 MPa. 国家自然科学基金(51375394)

References

[1]  Heider D, Piovoso M J, Jr Gillespie J W. A neural network model-based open-loop optimization for the automated thermoplastic composite tow-placement system[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(8): 791-799.
[2]  Pitchumani R, Ranganathan S, Don R C, et al. Analysis of transport phenomena governing interfacial bonding and void dynamics during thermoplastic tow-placement[J]. International Journal of Heat and Mass Transfer, 1996, 39(9): 1883-1897.
[3]  Shi Y Y, Tang H, Yu Q. Key technology of the NC tape-winding machine[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 233-239 (in Chinese). 史耀耀, 唐虹, 余强. 数控布带缠绕机关键技术[J]. 航空学报. 2008, 29(1): 233-239.
[4]  Department of Defense. MIL-HDBK-17-IF Polymer matrix composites guide lines for characterization of structural materials [M]. USA: Department of Defense, 2002: 282.
[5]  American Society for Testing and Materials International. ASTM D3846/D3846-02 Test method for in-plane shear strength of reinforced plastics[S]. West Conshohocken, PA: ASTM International, 2008.
[6]  Shirinzadeh B, Cassidy G, Oetomo D, et al. Trajectory generation for open-contoured structures in robotic fiber placement[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 380-394.
[7]  James D L, Black W Z. Experimental analysis and process window development for continuous filament-wound APC-2[J]. Journal of Thermoplastic Composite Materials, 1997, 10(3): 254-276.
[8]  Yamamoto N, de Villoria R G, Wardle B L. Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes[J]. Composites Science and Technology, 2012, 72(16): 2009-2015.
[9]  Rahman H, Jamshed R, Khan A, et al. Design of tape wound composite cylindrical shells incorporating different failure criteria and winding kinematics[J]. Advanced Materials Research, 2012, 570(9): 53-62.
[10]  Polini W, Sorrentino L. Influence of winding speed and winding trajectory on tension in robotized filament winding of full section parts[J]. Composites Science and Technology, 2005, 65(10): 1574-1581.
[11]  Sonmez F O, Hahn H T. Analysis of the on-line consolidation process in thermoplastic composite tape placement[J]. Journal of Thermoplastic Composite Materials, 1997, 10(6): 543-572.
[12]  Mantell S C, Springer G S. Manufacturing process models for thermoplastic composites[J]. Journal of Composite Materials, 1992, 26(16): 2348-2377.
[13]  Aized T, Shirinzadeh B. Robotic fiber placement process analysis and optimization using response surface method[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(1-4): 393-404.
[14]  Pitchumani R, Gillespie J W, Lamontia M A. Design and optimization of a thermoplastic tow-placement process with in-situ consolidation[J]. Journal of Composite Materials, 1997, 31(3): 244-275.
[15]  Sonmez F O, Akbulut M. Process optimization of tape placement for thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(9): 2013-2023.
[16]  Tierney J, Gillespie J W. Modeling of in situ strength development for the thermoplastic composite tow placement process[J]. Journal of Composite Materials, 2006, 40(16): 1487-1506.
[17]  Schell J S U, Guilleminot J, Binetruy C, et al. Computational and experimental analysis of fusion bonding in thermoplastic composites: Influence of process parameters[J]. Journal of Materials Processing Technology, 2009, 209(11): 5211-5219.
[18]  Dai S C, Ye L. Characteristics of CF/PEI tape winding process with on-line consolidation[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(9): 1227-1238.
[19]  Ageorges C, Ye L, Hou M. Advances in fusion bonding techniques for joining thermoplastic matrix composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(6): 839-857.
[20]  Ren S, Lu H, Wang Y, et al. Development of PLC-based tension control system[J]. Chinese Journal of Aeronautics, 2007, 20(3): 266-271.
[21]  Li X W, Zhou X D, Guo B B, et al. Influence of processing parameters of two-step filament winding on ILSS and resin content of continuous glass fiber reinforced polypropylene tubes[J]. Fiber Reinforced Plastics/Composites, 2011(6): 64-67 (in Chinese). 李旭武, 周晓东, 郭兵兵, 等. 工艺条件对两步法缠绕成型连续玻璃纤维增强聚丙烯管材层间剪切强度及树脂含量的影响[J]. 玻璃钢/复合材料, 2011(6): 64-67.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133