全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

TiC0.7N0.3增强ZrO2基复合材料的微观结构及力学性能
Microstructure and mechanical properties of TiC0.7N0.3 reinforcing ZrO2 matrix composites

DOI: 10.13801/j.cnki.fhclxb.20140917.003

Keywords: 陶瓷复合材料,ZrO2,TiC0.7N0.3,微观结构,热压烧结
ceramic composites
,ZrO2,TiC0.7N0.3,microstructure,hot pressing

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高ZrO2基复合材料硬度, 采用热压烧结法制备了TiC0.7N0.3/ZrO2复合材料, 并研究了TiC0.7N0.3颗粒增强相对复合材料的物相组成、微观结构和力学性能的影响。结果表明:TiC0.7N0.3的添加具有稳定四方相ZrO2(t-ZrO2)的作用, 能增加TiC0.7N0.3/ZrO2复合材料中t-ZrO2的含量, 提高断裂韧性。随着热压烧结温度的升高和TiC0.7N0.3含量的增加, 复合材料的硬度升高。1 400 ℃下热压烧结时, TiC0.7N0.3发生部分分解, 分解的N与被还原的ZrO2反应生成ZrN, 提高了复合材料的硬度。1 400 ℃下热压烧结后的35wt% TiC0.7N0.3/ZrO2复合材料的相对密度达99.9%, 维氏硬度达17 GPa。而1 300 ℃下热压烧结后, 复合材料断裂韧性较高, 为6.48 MPa·m1/2。研究结果为TiC0.7N0.3/ZrO2复合材料的组织控制及性能改进提供了参考。 To enhance the hardness of ZrO2 matrix composites, TiC0.7N0.3/ZrO2 composites were fabricated by hot pressing method, and the effects of TiC0.7N0.3 particle reinforcing phase on the phase composition, microstructure and mechanical properties of the composites were investigated. The results show that the addition of TiC0.7N0.3 has the effect to stabilize tetragonal ZrO2 (t-ZrO2), and can improve the t-ZrO2 content in TiC0.7N0.3/ZrO2 composites, thus improve the fracture toughness. With the hot pressing temperature and TiC0.7N0.3 content increasing, the hardness of composites increases. When hot pressing at 1 400 ℃, TiC0.7N0.3 decomposes partially, and the released N can react with reduced ZrO2 to form ZrN, which increases the hardness of composites. The relative density of 35wt% TiC0.7N0.3/ZrO2 composites after hot pressing at 1 400 ℃ exceeds 99.9% and Vickers hardness reaches 17 GPa. While the fracture toughness of composites is higher after hot pressing at 1 300 ℃, which is 6.48 MPa·m1/2. The conclusions provide references for microstructure controlling and improvement TiC0.7N0.3/ZrO2 composite properties. 国家科技重大专项(2012ZX04003-061)

References

[1]  Chen D Y, Li J C, Min S L, et al. Study on the structures and properties of ZrO2-Al2O3 composites[J]. Journal of Nanchang Institute of Aeronantical Technology: Nature Science Edition, 2005, 19(1): 45-48 (in Chinese). 陈德勇, 黎俊初, 闵嗣林, 等. ZrO2-Al2O3两相陶瓷复合材料力学性能与增韧机制的研究[J]. 南昌航空工业学院学报: 自然科学版, 2005, 19(1): 45-48.
[2]  Basu B, Vleugels J, van der Biest O. Processing and mechanical properties of ZrO2-TiB2 composites[J]. Journal of the European Ceramic Society, 2005, 25(16): 3629-3637.
[3]  Basu B, Vleugels J, van der Biest O. Development of ZrO2-ZrB2 composites[J]. Journal of Alloys and Compounds, 2002, 334(1-2): 200-204.
[4]  Santos C, Maeda L D, Cairo C A A, et al. Mechanical properties of hot-pressed ZrO2-NbC ceramic composites[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(1): 14-18.
[5]  ünal N, Kern F, ?ve?oglu M L, et al. Influence of WC particles on the microstructural and mechanical properties of 3mol% Y2O3 stabilized ZrO2 matrix composites produced by hot pressing[J]. Journal of the European Ceramic Society, 2011, 31(13): 2267-2275.
[6]  Salehi S, van der Biest O, Vleugels J. Electrically conductive ZrO2-TiN composites[J]. Journal of the European Ceramic Society, 2006, 26(15): 3173-3179.
[7]  Bonny K, de Baets P, Vleugels J, et al. Reciprocative sliding wear of ZrO2-TiC0.7N0.3 composites against WC-Co cemented carbide[J]. Wear, 2008, 265(11-12): 1767-1775.
[8]  Huang C Z, Zhang L, He L, et al. A study on the development of a composite ceramic tool ZrO2/(W, Ti)C and its cutting performance[J]. Journal of Materials Processing Technology, 2002, 129(1): 349-353.
[9]  Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 64(9): 533-538.
[10]  Zhang X H, Zhang R B, Chen G Q, et al. Microstructure, mechanical properties and thermal shock resistance of hot-pressed ZrO2(3Y)-BN composites[J]. Materials Science and Engineering: A, 2008, 497(1-2): 195-199.
[11]  Danilenko I, Glazunov F, Konstantinova T, et al. Effect of oxide nanofillers on fabrication, structure, and properties of zirconia-based composites[J]. Journal of the European Ceramic Society, 2013, 33(12): 2321-2325.
[12]  Anné G, Put S, Vanmeensel K, et al. Hard, tough and strong ZrO2-WC composites from nano-sized powders[J]. Journal of the European Ceramic Society, 2005, 25(1): 55-63.
[13]  Kuo C W, Shen C H, Yen F L, et al. Phase transformation behavior of 3mol% yttria partially-stabilized ZrO2(3Y-PSZ) precursor powder by an isothermal method[J]. Ceramics International, 2014, 40(2): 3243-3251.
[14]  Pei Y, Zhu S G, Qu H X. Two-step hot-pressing sintering of composite WC-40%Al2O3 compacts[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 127-134 (in Chinese). 裴杨, 朱世根, 瞿海霞. WC-40%Al2O3复合粉末二步热压烧结[J]. 复合材料学报, 2013, 30(6): 127-134.
[15]  Vleugels J, van der Biest O. Development of characterization of Y2O3-stabilized ZrO2(Y-TZP) composites with TiB2, TiN, TiC, and TiC0.5N0.5[J]. Journal of the American Ceramic Society, 1999, 82(10): 2717-2720.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133