|
- 2015
超临界氧化铝/聚醚砜-BMI-BBA-BBE复合材料的微观结构与耐热性
|
Abstract:
利用超临界乙醇修饰纳米Al2O3, 得SCE-Al2O3, 使其表面沉积活性基团; 以4, 4'-二氨基二苯甲烷双马来酰亚胺(BMI)为基体、3, 3'-二烯丙基双酚A(BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂、聚醚砜(PES)为增韧剂、SCE-Al2O3为改性剂, 通过原位聚合法合成了SCE-Al2O3/PES-BMI-BBA-BBE复合材料。采用SEM和FTIR观察分析了SCE-Al2O3纳米粒子和PES的增韧机制。结果表明: SCE-Al2O3纳米粒子处理时间不宜过长, 5 min为宜; FTIR显示在3 457 cm-1附近的—OH吸收峰增强, 说明粒子表面沉积了活性基团—OH; PES与BMI-BBA-BBE呈现两相结构, PES树脂以"蜂窝"状均匀分散在聚合物基体BMI-BBA-BBE中, PES用量增加会使其粒子尺寸增大, 适宜用量为5wt%。 SCE-Al2O3/PES-BMI-BBA-BBE复合材料的耐热性能测试结果显示: PES树脂会使材料的热分解温度降低, 但SCE - Al2O3会提高材料的耐热性能, 4wt% SCE-Al2O3/PES-BMI-BBA-BBE的热分解温度为444.41 ℃, 较基体树脂提高了20.52 ℃, 600 ℃时残重率为47.64%, 提高了7.09%。 Nano-Al2O3 was modified by supercritical ethanol (SCE-Al2O3) and the surface of SCE-Al2O3 was coated with active group. 4, 4'-diamino diphenyl methane bismaleimide (BMI) was used as matrix, 3, 3'-diallyl bisphenol A (BBA) and bisphenol-A diallyl ether (BBE) were used as reactive diluent, polyether sulfone (PES) as toughening agent and SCE-Al2O3 as modifier, SCE-Al2O3/PES-BMI-BBA-BBE composites were prepared through in-situ polymerization method. The toughening mechanisms of SCE-Al2O3nano particles and PES were observed and analyzed by SEM and FTIR. The results show that the processing time of SCE-Al2O3nano particles should not be too long(5 min is appropriate). FTIR shows that the characteristic peak of —OH at 3 457 cm-1 is enhanced and indicates that the surface of Al2O3 is coated with reactive group —OH. PES presentes as two-phase structure in BMI-BBA-BBE matrix, PES resin disperses in polymer matrix with "honeycomb" shape evenly and the size of "honeycomb" enlarges with the increasing of PES content (5wt% is appropriate). Results of heat resistance of composites show that the thermal decomposition temperature would decline when BMI-BBA-BBE matrix mixed with PES, and SCE-Al2O3 could enhance the thermal stability of composites. The thermal decomposition temperature of 4wt% SCE -Al2O3/PES-BMI-BBA-BBE is 444.41 ℃, which is 20.52 ℃ higher than that of matrix resin. Rate of residual mass at 600 ℃ is 47.64%, enhanced by 7.09%. 黑龙江省教育厅资助项目(11551071);哈尔滨市人才创新基金(2012RFJGG006)
[1] | Li Y, Liu J C, Lu P F, et al. Molecular dynamics simulation of ethanol from NTP to supercritical[J]. Acta Physica Sinica, 2010(7): 4880-4887 (in Chinese). 李勇, 刘锦超, 芦鹏飞, 等. 从常温常压到超临界乙醇的分子动力学模拟[J]. 物理学报, 2010(7): 4880-4887. |
[2] | Selvaganapathi A, Alagar M, Gnanasundaram P. Studies on synthesis and characterization of hydroxyl-terminated polydimethylsiloxane-modified epoxy bismaleimide matrices[J]. High Performance Polymers, 2013, 25(6): 622-633. |
[3] | Liu X X, Yang X J. Effect of nanometer sized TiO2 on reactivity and thermal properties of modified BMI resins[J]. Acta Materiae Compositae Sinica, 2001, 18(1): 12-15 (in Chinese). 刘祥萱, 杨绪杰. 纳米 TiO2 对改性 BMI 树脂固化反应及热稳定性影响[J]. 复合材料学报, 2001, 18(1): 12-15. |
[4] | Tsukahara T, Harada M, Tomiyasu H, et al. NMR studies on effects of temperature, pressure, and fluorination on structures and dynamics of alcohols in liquid and supercritical states[J]. The Journal of Physical Chemistry A, 2008, 112(40): 9657-9664. |
[5] | Luo T. Study on diallyl bisphenol A modify BMI high-temperature resistance adhesive[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). 罗甜. 二烯丙基双酚 A 改性双马来酰亚胺耐高温胶粘剂研究[D]. 武汉: 武汉理工大学, 2010. |
[6] | Tsai P F, Wu C F, Hsiao Y C, et al. Properties of novel polyimides containing bismaleimide and cyclic phosphine oxide[J]. Journal of Polymer Research, 2009, 16(6): 673-680. |
[7] | Ning Z Q, Xu X M. Toughening modification research of BMI resin[J]. Chemistry and Adhesion,2007, 29(5): 345-346, 364 (in Chinese). 宁志强,徐晓沐.双马来酰亚胺树脂的增韧改性研究[J].化学与黏合, 2007, 29(5) : 345-346, 364(in Chinese). |
[8] | Ding F C, Chen Q S, Lai S L, et al. Bismaleimide (BMI) resin modified by PEEK bearing pendant reactive propenyl groups[J]. Advanced Materials Research, 2011, 197: 1299-1305. |
[9] | Chen Y F, Fan Y. Properties of nadic polyimide modified by gel-alumina[J]. Acta Materiae Compositae Sinica, 2008, 25(4): 51-55 (in Chinese). 陈宇飞, 范勇. 活性氧化铝改性纳迪克酰亚胺的性能研究[J]. 复合材料学报, 2008, 25(4): 51-55. |
[10] | Zhang L J, Yu X H. Research progress on thermoplastic resin toughening bismaleimide[J]. Insulating Materials, 2008, 41(5): 34-39 (in Chinese). 张丽娟, 虞鑫海. 热塑性树脂增韧改性双马来酰亚胺树脂的研究进展[J]. 绝缘材料, 2008, 41(5): 34-39. |
[11] | Wang R M, Yang L, Zheng S R, et al. Study on thermoplastic resin toughening MBMI/DABPA composite[J]. Journal of Solid Rocket Technology, 2001, 24(4) :62-65. 王汝敏, 杨利, 郑水蓉, 等. 热塑性树脂增韧MBMI/DABPA 复合材料效果研究[J]. 固体火箭技术, 2001, 24(4): 62-65 (in Chinese). |
[12] | Seyedjamali H, Pirisedigh A. In situ sol-gel fabrication of new poly (amide-ether-imide)/titania (TiO2) nanocomposite thin films containing L-leucine moieties[J]. Colloid and Polymer Science, 2011, 289(1): 15-20. |
[13] | Mirjalili F, Chuah L, Khalid M, et al. Effects of nano α-Al2O3 fillers and dispersant on thermal and dynamic mechanical properties of polypropylene/nano α-Al2O3 composite[J]. Journal of Thermoplastic Composite Materials, 2012, 25(4): 453-467. |
[14] | Chen Y F, Yue W, Bian Z Z, et al. Preparation and properties of KH550-Al2O3/PI-EP nanocomposite material[J]. Iranian Polymer Journal, 2013, 22(5): 377-383. |
[15] | Lal R, Rathore B S, Gaur M S. Structural and polarization properties of polyimide/TiO2 nanocomposites[J]. Ionics, 2012,18(6): 565-572. |