Cheng GX, Zuo JZ, Lou ZW, et al. Continuum damage model of low-cycle fatigue and fatigue damage analysis of welded joint[J]. Engineering Fracture Mechanics, 1996,55(1):155-161.
[2]
Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites[J]. Acta Metall,1989,37(11):3029-3050.
[3]
Bao G, Hutchinson JW, McMeeking RM. Particle reinforcement of ductile matrices against plastic flow and creep[J]. Acta Metall, 1991,39(8): 1871-1882.
[4]
Lloyd D J. Aspects of fracture in particulate reinforced metal matrix composites[J]. Acta Metall Mater, 1991, 39(1):59-71.
[5]
Mochida T, Taya M, Obata M. Effect of damaged particles on the stiffness of a particle/metal matrix composite[J]. JSME, International Journal Series I, 1991,34(2): 187-193.
[6]
Kachanov L M. Rupture Time under Creep Conditions . In: Problems of Continuum Mechanics[M]. Philadelphia, PA: SIAM, 1961.202-218.
[7]
Wang TJ. A continuum damage model for ductile fracture of weld heat affected zone[J]. Engineering Fracture Mechanics, 1991,40(6):1075-1082.
[8]
Preet M S, Lewandowski J J. Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiC discontinuously reinforced aluminum alloy[J]. Metallurgical Transaction A,1993, 24A(11): 2531-2543.
[9]
Mummery P M, Durodola J F, Gallerneault M,et al. Analysis of the effect of particle associated damage on the stiffness of metal matrix composites . In: Lloyd D L, ed. Proceedings of a Symposium for Intrinsic and Extrinsic Fracture Mechanisms in Inorganic Composite Systems . Las vegas: Nevada, 1995.77-84.