全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

AlN填充有机灌封硅橡胶导热性能的数值模拟

, PP. 217-222

Keywords: 有机硅灌封胶,AlN,有限元分析,随机序列吸附(RSA),计算模型,导热系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过数值技术及实验手段研究了含有球形氮化铝(AlN)导热填料的有机灌封硅橡胶的导热性能。采用随机序列吸附(RSA)方法,建立了AlN增强有机灌封硅橡胶的三维有限元模型,该模型可以生成颗粒位置随机分布、颗粒直径任意调整的代表体积单元,能够得到单一粒径和多粒径的模型。制备了半径3μmAlN增强硅橡胶的复合材料,并测试了不同填充量下体系的导热系数。对比有限元方法得到的导热系数预测值与实验测试结果,证明该模型能够较精确地模拟球形填料增强的复合材料。模拟结果显示:灌封胶的导热系数随着AlN含量的增加而增大,并且质量分数大于50%时增大的幅度越来越大;填料粒径呈正态分布时,能够在硅橡胶基体中有效堆积而提高填充量;两种粒径比例不同时,导热系数也不同。

References

[1]  冯圣玉, 张 浩, 李美江, 朱庆增. 有机硅高分子及其应用[M]. 北京: 化学工业出版社, 2004: 74-98.
[2]  Sebnem Kemaloglu, Guralp Ozkoc, Ayse Aytac. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites [J]. Thermochimica Acta, 2010, 499(1): 40-47.
[3]  Wang Q, Gao W, Xie Z M. Highly thermally conductive room-temperature-valcanized silicone rubber and silicone grease [J]. Journal of Applied Polymer Science, 2003, 89(9): 2397-2399.
[4]  Agari Y, Uno T. Estimation on thermal conductivities of filled polymer [J]. Journal of Polymer Science, 1986, 32(5): 705-708.
[5]  Plast O H. Thermal conductivity of composite materials [J]. Rubber Process, 1981, 1(1): 9-15.
[6]  Ramani K, Vaidyanathan A. A finite element analysis of effective thermal conductivity of filled polymeric composites [J]. Journal of Composite Materials, 1995, 29(13): 1725-1740.
[7]  Kumlutas D, Tavman I H. A numerical and experimental study on thermal conductivity of particle filled polymer composites [J]. Journal of Thermoplastic Composite Materials, 2006, 19(4): 441-455.
[8]  Sanada K, Tada Y, Shindo Y. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers [J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(7): 724-730.
[9]  刘加奇, 张立群, 杨海波, 等. 粒子填充聚合物基复合材料导热性能的数值模拟 [J]. 复合材料学报, 2009, 26(1): 36-42. Liu Jiaqi, Zhang Liqun, Yang Haibo, et al. Numerical investigation of the thermal property of particle filled polymer matrix composite [J]. Acta Materiae Compositae Sinica, 2009, 26(1): 36-42.
[10]  于敬宇, 李玉龙, 周宏霞, 等. 颗粒尺寸对颗粒增强型金属基复合材料动态特性的影响 [J]. 复合材料学报, 2005, 22(5): 31-38. Yu Jingyu, Li Yulong, Zhou Hongxia, et al. Influence of particle size on the dynamic behavior of PMMCs [J]. Acta Materiae Compositae Sinica, 2005, 22(5): 31-38.
[11]  孙爱芳, 刘敏珊, 董其伍. 石墨/PTFE复合材料导热性能的数值模拟 [J]. 材料科学与工程学报, 2007, 25(3): 430-434. Sun Aifang, Liu Minshan, Dong Qiwu. Numerical simulation of thermal conductivity of graphite/PTFE composite [J]. Journal of Materials Science & Engineering, 2007, 25(3): 430-434.
[12]  Lee Bin, Dai Gance. Influence of interfacial modification on the thermal conductivity of polymer composites [J]. Journal of Materials Science, 2009, 44(18): 4848-4855.
[13]  Lorea J L, Segurado J. Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites [J]. Materials Science and Engineering A, 2004, 365(1): 267-274.
[14]  Lee Geon-Woong, Park Min, Kim Junkyung, et al. Enhanced thermal conductivity of polymer composites filled with hybrid filler [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(5): 727-734.
[15]  李 宾, 刘 妍, 孙 斌, 等. 聚合物基导热复合材料的性能及导热机理 [J]. 化工学报, 2009, 60(10): 2650-2655. Li Bin, Liu Yan, Sun Bin, et al. Properties and heat-conduction mechanism of thermally conductive polymer composites [J]. CIESC Journal, 2009, 60(10): 2650-2655.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133