Li X J, Chen H F, Sha J B, Zhang H. The effects of melting technologies on the microstructure and properties of Nb-16Si-22Ti-2Al-2Hf-17Cr alloy [J]. Materials Science and Engineering A, 2010, 527: 6140-6152.
[2]
Sha J B, Hirai H, Tabaru T, Kitahara A, et al. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures [J]. Metall Mater Trans A, 2003, 34(1): 85-94.
[3]
Bewlay B P, Jackson M R, Lipsitt H A. The balance of mechanical and environmental properties of a multi-element niobium-niobium silicide-based in-situ composite [J]. Metallurgical Materials Transactions, 1996, 27: 3801-3808.
[4]
Zelenitsas K, Tsakiropoulos P. Study of the Al and Cr additions in the microstructure of Nb-Ti-Si in-situ composites [J]. Intermetallics, 2005, 13: 1079-1083.
[5]
郑海忠, 鲁世强, 肖 旋, 李 鑫, 等. Laves 相 NbCr2室温脆性的研究进展 [J]. 稀有金属材料与工程, 2007, 36(1): 178-182. Zheng Haizhong, Lu Shiqiang, Xiao Xuan, Li Xin, et al. Research progress on brittleness of Laves phase NbCr2 compounds at ambient temperature [J]. Rare Metal Materials and Engineering, 2007, 36(1): 178-182.
[6]
Chan K S. Alloying effects on the fracture toughness of Nb-based silicides and Laves phases [J]. Mateials Science and Engineering A, 2005, 409(1/2): 257-269.
[7]
Chan K S, Davidson D L. Improving the fracture toughness of constituent phases and Nb-based in-situ composites by a computational alloy design approach [J]. Metall Mater Trans A, 2003, 34(9): 1833-1849.
[8]
王 勇, 郭喜平. 凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响 [J]. 金属学报, 2010, 46(7): 506-512. Wang Yong, Guo Xiping. Effect of solidifying rate on integrally directionally solidified microstructure and solid/liquid interface morphology of an Nb-Ti-Si base alloy [J]. Acta Metallurgica Sinica, 2010, 46(7): 506-512.
[9]
Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. A review of very high-temperature Nb-Si based composites [J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2043-2052.
[10]
Zhao J C, Westbrook J H. Ultrahigh temperature materials for jet engines [J]. MRS Bulletin, 2003, 28(9): 622-627.
[11]
Tanaka R, Kasama A, Fujikura M, et al. Newly developed niobium-based superalloys for elevated temperature application [J]. The Minerals, Metals & Materials Society, 2004(2): 89-98.
[12]
刘 肖, 李玉龙, 沙江波, 马朝利. 合金元素对Nb-Mo-Si合金相平衡及Nb-Nb5Si3共晶组织形态的影响 [J]. 复合材料学报, 2008, 25(2): 16-20. Liu Xiao, Li Yulong, Sha Jiangbo, Ma Chaoli. Effect of alloying additions on the phase equilibria and Nb-Nb5Si3 eutectic morphologies of Nb-Mo-Si alloys [J]. Acta Materiae Compositae Sinica, 2008, 25(2): 16-20.
[13]
Subramanian P R, Mendiratta M G, Dimiduk D M, Stucke M A. Advanced intermetallic alloys—Beyond gamma titanium aluminides [J]. Materials Science and Engineering A, 1997, 239/240: 1-13.
[14]
Yang X X, Sha J B, Zhang H. Property responses in Nb-Si-Ti-Al-W-B-Cr alloys for high temperature applications [J]. Materials Science Forum, 2010, 654/656: 468-471.
[15]
白 润, 郑 欣, 李中奎, 王东辉. 元素合金化对Nb基高温合金组织和力学性能的影响 [J]. 稀有金属材料与工程, 2007, 36(3): 359-362. Bai Run, Zheng Xin, Li Zhongkui, Wang Donghui. Effect of alloying elements on the microstructure and mechanical properties of Nb-based high temperature alloys [J]. Rare Metal Materials and Engineering, 2007, 36(3): 359-362.
[16]
贾丽娜, 李小溅, 沙江波, 张 虎. 定向凝固对Nb-14Si-22Ti-2Hf-2Al-4Cr合金组织和高低温力学性能的影响 [J]. 稀有金属材料与工程, 2010, 39(8): 1475-1479. Jia Lina, Li Xiaojian, Sha Jiangbo, Zhang Hu. Effects of directional solidification on microstructure and mechanical properties of Nb-14Si-22Ti-2Hf-2Al-4Cr alloy [J]. Rare Metal Materials and Engineering, 2010, 39(8): 1475-1479.