全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

正交铺设陶瓷基复合材料单轴拉伸行为

, PP. 178-185

Keywords: 陶瓷基复合材料,正交铺设,横向开裂,基体开裂,界面脱粘,纤维失效,应力-应变曲线

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用细观力学方法对正交铺设陶瓷基复合材料单轴拉伸应力-应变行为进行了研究。采用剪滞模型分析了复合材料出现损伤时的细观应力场。采用断裂力学方法、临界基体应变能准则、应变能释放率准则及Curtin统计模型4种单一失效模型确定了90°铺层横向裂纹间距、0°铺层基体裂纹间距、纤维/基体界面脱粘长度和纤维失效体积分数。将剪滞模型与4种单一损伤模型结合,对各损伤阶段应力-应变曲线进行了模拟,建立了复合材料强韧性预测模型。与室温下正交铺设陶瓷基复合材料单轴拉伸应力-应变曲线进行了对比,各个损伤阶段的应力-应变、失效强度及应变与试验数据吻合较好。分析了90°铺层横向断裂能、0°铺层纤维/基体界面剪应力、界面脱粘能、纤维Weibull模量对复合材料损伤及拉伸应力-应变曲线的影响。

References

[1]  Opalski F A, Mall S. Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composite [J]. Journal of Reinforced Plastics and Composites, 1994, 13(7): 617-636.
[2]  Kuo W S, Chou T W. Multiple cracking of unidirectional and cross-ply ceramic matrix composites [J]. Journal of the American Ceramic Society, 1995, 78(3): 745-755.
[3]  许仁红, 宋迎东, 李龙彪, 孙志刚. 准静态加载下陶瓷基层合板应力-应变曲线模拟 [J]. 航空动力学报, 2008, 23(10):1854-1858. Xu Renhong, Song Yingdong, Li Longbiao, Sun Zhigang. Modeling behavior of cross-ply ceramic matrix composites under quasi-static loading [J]. Journal of Aerospace Power, 2008, 23(10): 1854-1858.
[4]  李龙彪, 宋迎东, 孙志刚. 纤维泊松收缩对陶瓷基复合材料基体裂纹演化的影响 [J], 航空动力学报, 2008, 23(12): 2196-2201. Li Longbiao, Song Yingdong, Sun Zhigang. Influence of fiber poisson contraction on matrix cracking development of ceramic matrix composites [J]. Journal of Aerospace Power, 2008, 23(12): 2196-2201.
[5]  Curtin W A. Stochastic damage evolution and failure in fiber-reinforced composites [J]. Advanced Applied Mechanics, 1999, 36: 163-253.
[6]  Garrett K W, Bailey J E. Multiple transverse fracture in 90o cross-ply laminates of a glass fiber-reinforced polyester [J]. Journal of Materials Science, 1977, 12(1): 157-168.
[7]  张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨 [J]. 复合材料学报, 2007, 24(2): 1-6. Zhang Litong, Cheng Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites [J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6.
[8]  李龙彪, 宋迎东, 孙志刚. 单向陶瓷基复合材料单轴拉伸行为[J]. 复合材料学报, 2008, 25(4): 154-160. Li Longbiao, Song Yingdong, Sun Zhigang. Uniaxial tensile behavior of unidirectional fiber reinforced ceramic matrix composites [J]. Acta Materiae Compositae Sinica, 2008, 25(4): 154-160.
[9]  Zawada L P, Butkus L M, Hartman G A. Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass [J]. Journal of the American Ceramic Society, 1991, 74(11): 2851-2858.
[10]  Beyerle D B, Spearing S M, Evans A G. Damage mechanisms and the mechanical properties of a laminated 0°/90° ceramic/matrix composite [J]. Journal of the American Ceramic Society, 1992, 75(12): 3321-3330.
[11]  Pryce A W, Smith P A. Behavior of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading [J]. Journal of Materials Science, 1992, 27(10): 2695-2704.
[12]  Laws N, Dvorak G J. Progressive transverse cracking in composite laminates [J]. Journal of Composite Materials, 1988, 22(10): 900-916.
[13]  Fukunaga H, Chou T W, Peters P W M, et al. Probabilistic failure strength analysis of graphite/epoxy cross-ply laminates [J]. Journal of Composite Materials, 1984, 18(4): 339-356.
[14]  Daniel I M, Lee J W. The behavior of ceramic matrix fiber composites under longitudinal loading [J]. Composites Science and Technology, 1993, 46(2): 105-113.
[15]  Zok F W, Spearing S M. Matrix crack spacing in brittle matrix composites [J]. Acta Metall Mater, 1992, 40(8): 2033-2043. 
[16]  Solti J P, Mall S, Robertson D D. Modeling of matrix failure in ceramic matrix composites [J]. Journal of Composites Technology and Research, 1997, 19(1): 29-40.
[17]  Curtin W A, Multiple matrix cracking in brittle matrix composites [J]. Acta Metall et Materialia, 1993, 41(5): 1369-1377. 
[18]  Hsueh C H. Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites [J]. Acta Mater, 1996, 44(6): 2211-2216.
[19]  Gao Y, Mai Y, Cotterell B. Fracture of fiber-reinforced materials [J]. J Applied Mathematics and Physics (ZAMP), 1988, 39(7): 550-572.
[20]  Sun Y J, Singh R N. The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite [J]. Acta Materialia, 1998, 46(5): 1657-1667.
[21]  Chiang Y C. On fiber debonding and matrix cracking in fiber-reinforced ceramics [J]. Composites Science and Technology, 2001, 61(12): 1743-1756.
[22]  Aveston J, Cooper G A, Kelly A. Single and multiple fracture, the properties of fiber composites // Conference Proceedings on the Properties of Fiber Composites, National Physical Laboratory. Guildford, UK: IPC Science and Technology Press Ltd, 1971: 15-26.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133