全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米羟基磷灰石对Mg-Zn-Zr-合金体外生物性能的影响

, PP. 82-87

Keywords: 纳米羟基磷灰石,nHA/Mg-2.5Zn-0.5Zr复合材料,成骨细胞,体外细胞培养,细胞增殖

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用常规熔炼方法在氩气保护和电磁搅拌条件下制备了纳米羟基磷灰石(nHA)/Mg-2.5Zn-0.5Zr(质量分数,%)生物复合材料,并与基体镁合金对比,通过与大鼠成骨细胞共培养考察材料的体外生物相容性。结果表明,2组材料均无明显细胞毒性,但在倒置相差显微镜下,nHA/Mg-2.5Zn-0.5Zr材料周边细胞形态完好,密度显著高于基体镁合金组,前3天培养液中基本无材料溶出物,5~7天后溶出物少于基体镁合金组。细胞生长曲线显示,随着培养时间延长2组材料表面的细胞数量均呈上升趋势,而在复合培养的第3天和第5天,nHA/Mg-2.5Zn-0.5Zr复合材料表面细胞增殖量显著大于基体镁合金组。扫描电镜下可见成骨细胞对2组材料的反应有所不同,在复合材料表面,细胞呈梭形或三角形紧密贴伏,其伪足正常伸展使细胞彼此相连,7天后完全覆盖了整个试样。相反,基体镁合金表面细胞呈纺锤状,显示与材料的细胞吸附性较差。

References

[1]  赵彦涛, 张玉梅, 宁 芳, 等. 两种纳米晶羟基磷灰石的细胞相容性比较 [J]. 现代口腔医学杂志, 2007, 21(1): 16-19. Zhao Yantao, Zhang Yumei, Ning Fang, et al. Comparison of cellular biocompatibility of different nanocrystalline hydroxyapatite (HA) [J]. Journal of Modern Stomatology, 2007, 21(1): 16-19.
[2]  廖 立, 尹光福, 谢克难, 等. β-偏磷酸钙/聚乳酸复合骨折内固定材料的细胞相容性 [J]. 复合材料学报, 2009, 26(4): 59-62. Liao Li, Yin Guangfu, Xie Kenan, et al. Cellular compatibility of β-calcium metaphosphate(β-TCP)/poly-L-lactide(PLLA) fracture innerfixation composites [J]. Acta Materiae Compositae Sinica, 2009, 26(4): 59-62.
[3]  余 刚, 刘跃龙, 李 瑛, 等. 镁合金的腐蚀与防护 [J]. 中国有色金属学报, 2002, 12(6): 1087-1098. Yu Gang, Liu Yuelong, Li Ying, et al. Corrosion and protection of magnesium alloys [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(6): 1087-1098.
[4]  Pietak A, Mahoney P, Dias G J, et al. Bone-like matrix formation on magnesium alloys [J]. J Mater Sci: Mater Med, 2008, 19(1): 407-415.
[5]  潘 辉, 刘晓烈, 孙立喜, 等. 镁及镁合金晶粒细化的研究现状 [J]. 金属材料与冶金工程, 2009, 37(1): 8-12. Pan Hui, Liu Xiaolie, Sun Lixi, et al. Research present situation of the grain refinement for magnesium and magnesium alloys[J]. Metal Materials and Metallurgy Engineering, 2009, 37(1): 8-12.
[6]  温 波, 陈治清, 蒋引珊, 等. 纳米羟基磷灰石对成骨细胞功能代谢影响的研究 [J]. 生物医学工程学杂志, 2005, 22(3): 463-467. Wen Bo, Chen Zhiqing, Jiang Yinshan, et al. Experimental research on the effect of nanophase ceramics on osteoblasts functions [J]. Journal of Biomedical Engineering, 2005, 22(3): 463-467.
[7]  Pietak A M, Staiger M P, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27(9): 1728-1734.
[8]  Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response [J]. Biomaterials, 2005, 26(17): 3557-3563.
[9]  Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27(7): 101-1018.
[10]  Xu L P, Zhang E L, Yin D S, et al. In vitro corrosion behavior of Mg alloys in a phosphate buffered solution for bone implant application [J]. J Mater Sci: Mater Med, 2008, 19(3): 1017-1025.
[11]  Quach N C, Uggowitzer P J, Schmutz P, et al. Corrosion behavior of an Mg-Y-RE alloy used in biomedical applications studied by electrochemical techniques [J]. Comptes Rendus Chimie, 2008, 11(9): 1043-1054.
[12]  Sahar S, EI-Rahman Abd. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment) [J]. Pharmacological Research, 2003, 47(3): 189-194.
[13]  Nakamura Y, Tsumura Y, Tonogai Y, et al. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats [J]. Fundam Appl Toxicol, 1997, 37(2): 106-116.
[14]  Li Zijian, Gu Xuan, Lou Siquan, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone [J]. Biomaterials, 2008, 29(10): 1329-1344.
[15]  Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys [J]. Biomaterials, 2009, 30(4): 484-498.
[16]  Gu X N, Zheng Y F, Zhong S P, et al. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses[J]. Biomaterials, 2010, 31(6): 1093-1103.
[17]  He W W, Zhang E L, Yang K, et al. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank’s solusion [J]. Materials Science and Engineering C, 2010, 30(1): 167-174.
[18]  Zhang E L, Yang L, Xu J W, et al. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application [J]. Acta Biomaterialia, 2010, 6(5): 1756-1760.
[19]  Kirkland N T , Lespagnol J, Birbilis N, et al. A survey of bio-corrosion rates of magnesium alloys [J]. Corrosion Science, 2010, 52(2): 287-291.
[20]  Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites [J]. Biomateials, 2007, 28(13): 2163-2174.
[21]  刘德宝, 陈民芳, 王晓伟. HA/Mg生物复合材料的制备及其腐蚀特性 [J]. 稀有金属材料与工程, 2008, 37(12): 2201-2205. Liu Debao, Chen Minfang, Wang Xiaowei. Fabrication and corrosion biodegradable properties of the HA/Mg biocomposite [J]. Rare Metal Materials and Engineering, 2008, 37(12): 2201-2205.
[22]  Ye Xinyu, Chen Minfang, Yang Meng, et al. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr alloy composite [J]. Journal of Material Science:Material in Medicine, 2010, 21(4): 1321-1328.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133