全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复合材料夹层板屈曲强度的分散性分析

, PP. 132-137

Keywords: 复合材料夹层板,屈曲强度,分散性,高阶剪切,随机有限元

Full-Text   Cite this paper   Add to My Lib

Abstract:

将面板单层及芯层厚度、面板纤维方向角和材料参数作为随机变量,通过编制基于高阶剪切理论的随机有限元程序,对复合材料夹层板的屈曲强度分散性进行了分析,得到了不同铺层方式下夹层板屈曲强度分散系数随纤维方向角及夹层板长厚比的变化规律。并通过对屈曲强度的分散系数进行灵敏度分析,确定了影响分散系数大小的主要因素,从而为材料设计、制造工艺改进和夹层板结构可靠度的提高提供了理论依据。

References

[1]  Nayak A K, Moy S S J, Shenoi R A. A higher order finite element theory for buckling and vibration analysis of initially stressed composite sandwich plates [J]. Journal of Sound and Vibration, 2005, 286(4/5): 763-780.
[2]  Singh B N, Lal A, Kurnar R. Nonlinear bending response of laminated composite plates on nonlinear elastic foundation with uncertain system properties [J]. Engineering Structures, 2008, 30(4): 1101-1112.
[3]  边文凤, 朱福宝. 层合板壳的概率有限元分析 [J]. 复合材料学报, 2000, 17(3): 120-123. Bian Wenfeng, Zhu Fubao. Stochastic finite element analysis of laminated shells [J]. Acta Materiae Compositae Sinica, 2000, 17(3): 120-123.
[4]  Lin S C, Kam T Y, Chu K H. Evaluation of buckling and first-ply failure probabilities of composite laminates [J]. International Journal of Solids and Structures, 1998, 35(13): 1395-1410.
[5]  Chen N Z, Soares C G. Reliability assessment of post-buckling compressive strength of laminated composite plates and stiffened panels under axial compression [J]. International Journal of Solids and Structures, 2007, 44(22/23): 7167-7182.
[6]  Singh B N, Lal A, Kumar R. Post buckling response of laminated composite plate on elastic foundation with random system properties [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 284-300.
[7]  Moreira R A S, Rodrigues J D. A layerwise model for thin soft core sandwich plates [J]. Computers and Structures, 2006, 84(19/20): 1256-1263.
[8]  Plagianakos T S, Saravanos D A. Higher-order layer-wise laminate theory for prediction of interlaminar shear stresses in thick composite and sandwich composite plates [J]. Computers and Structures, 2009, 87(1): 23-35.
[9]  Pokharel N, Mahendran M. Finite element analysis and design of sandwich panels subject to local buckling effects [J]. Thin-Walled Structures, 2004, 42(4): 589-611.
[10]  Ganapathi M, Polit O, Touratier M. A C0 eight-node membrane-shear-beading element for geometrically nonlinear (static-dynamic) analysis of laminates [J]. International Journal for Numerical Method in Engineering, 1996, 39(20): 3453-3474.
[11]  Shen H S. Thermal postbuckling analysis of imperfect Reissner-Mindlin plates on softening nonlinear elatisc foundations [J]. Journal of Engineering Mathematics, 1998, 33(3): 259-270.
[12]  Reddy J N, Phan N D. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory [J]. Journal of Sound and Vibration, 1985, 98(2): 157-170.
[13]  Rikards R, Chate A, korjakin A. Vibration and damping analysis of laminated composite plates by the finite element method [J]. Engineering Computations, 1995, 12(6): 61-74.
[14]  Reddy J N. Mechanics of aminated composite plates, theory and analysis [M]. Florida: CRC Press, 1996.
[15]  王勖成, 邵 敏. 有限单元法基本原理和数值方法 [M]. 北京: 清华大学出版社, 1997.
[16]  Panda S, Nataraian R. Analysis of laminates composite shell structures by finite element method [J]. Computers and Structures, 1981, 14(3/4): 225-230.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133