全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

正交平面织物球面成型渔网模型的几何分析

, PP. 134-139

Keywords: 悬垂,成型性,织物,预制件,坐标变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了从理论上表征平面正交织物球面成型后的几何特征,提出基于坐标变换求解渔网模型的新方法,确定单层正交平面织物在球面上铺覆成型后的网格位置、织物剪切变形和纱线弯曲变形。依据弧长不变条件确定方形织物完全包覆球面后的对称面上的网格位置和局部坐标系下中间网格的位置,利用坐标变换获得中间网格在整体坐标系成型球面上的坐标位置;根据变形前后的网格形状确定织物面内剪切变形和两个方向纱线的弯曲曲率,为织物的球面成型性评价提供几何参数。通过实例证明了当网格尺寸远小于球体半径时铺覆变形程度与网格尺寸无关,也与球体半径无关。铺覆后织物的剪切变形和纱线弯曲变形分布只与织物在球面上的球坐标位置有关。

References

[1]  Laroche D, Vu-Khanh T. Forming of woven fabric composites [J]. Journal of Composite Materials, 1994, 28(18): 1825-1839.
[2]  Lim T C, Ramakrishna S. Modelling of composite sheet forming: A review [J]. Composites: Part A, 2002, 33(4), 515-537.
[3]  Robertson R E, Chu T J, Gerard R J, Kim J H, Park M, Kim H G, Peterson R C. Three dimensional fiber reinforcement shapes obtainable from flat, bidirectional fabrics without wrinkling or cutting. Part 2: A single n-sided pyramid, cone, or round box [J]. Composite: Part A, 2000, 31, 1149-1165.
[4]  Cho Y S, Komatsu T, Inui S, Takatera M, Shimizu Y, Park H. Individual pattern making using computerized draping method for clothing [J]. Textile Research Journal, 2006, 76(8): 646-654.
[5]  Ye L, Daghyani H R. Characteristics of woven fibre fabric reinforced composites in forming process [J]. Composites: Part A, 1997, 28A: 869-874.
[6]  Rozant O, Bourban P E, Manson J A E. Drapability of dry textile fabrics for stampable thermoplastic preforms [J]. Composites: Part A, 2000, 31(11): 1167-1177.
[7]  Potter K. Beyond the pin-jointed net: Maximising the deformability of aligned continuous fibre reinforcements [J]. Composites: Part A, 2002, 33(5): 677-686.
[8]  Wang J, Page J R, Paton R. Experimental investigation of the draping properties of reinforcement fabrics [J]. Composites Science and Technology, 1998, 58(2): 229-237.
[9]  Mohammed U, Lekakou C, Bader M G. Experimental studies and analysis of the draping of woven fabrics [J]. Composites: Part A, 2003, 112: 1409-1420.
[10]  Jedda H, Ghith A, Sakli F. Prediction of fabric drape using the FAST system [J]. Journal of the Textile Institute, 2007, 98(3): 219-225.
[11]  Cao J, Akkerman R, Boisse P, Chen J, Cheng H S, Graaf E F D, Gorczyca J L, Harrison P. Characterization of mechanical behavior of woven fabrics-Experimental methods and benchmark results [J]. Composites: Part A, 2008, 39: 1037-1053.
[12]  Zhu B, Yu T X, Zhang H, Tao X M. Experimental investigation of formability of commingled woven composite preform in stamping operation [J]. Composites: Part B, 2011, 42(2): 289-295.
[13]  Mack C, Taylor H M. The fitting of woven cloth to surfaces [J]. Journal of Textile Institute, 1956, 47(8): 477-488.
[14]  Robertson R E, Hsiue E S, Sickafus E N, Yeh G S Y. Fiber rearrangements during the molding of continuous fiber composites. Ⅰ: Flat cloth to a hemisphere [J]. Polymer Composites, 1981, 2(3): 126-131.
[15]  Robertson R E, Hsiue E S, Yeh G S Y. Continuous fiber rearrangements during the molding of fiber composites. Ⅱ: Flat cloth to a rounded cone [J]. Polymer Composites, 1984, 5(33): 191-197.
[16]  Bassett R J, Postle R. The fitting of woven fabrics to a three-dimensional surface [J]. International Journal of Clothing Science and Technology, 1990, 2(1): 26-31.
[17]  Wee?n Van Der F. Algorithms for draping fabrics on doubly-curved surfaces [J]. International Journal for Numerical Method in Engineering, 1991, 31: 1415-1426.
[18]  Aono M, Breen D E, Wozny M J. Fitting a woven-cloth model to a curved surface: Mapping algorithms [J]. Computer Aided Design, 1994, 26(4): 278-292.
[19]  Bendali F, Koko J, Quilliot A. The draping of fabrics over arbitrary surfaces: An augmented-Lagrangian method [J]. Journal of the Textile Institute, 1999, 90(2): 177-186.
[20]  Potluri P, Sharma S, Ramgulam R. Comprehensive drape modeling for moulding 3D textile performs [J]. Composites: Part A, 2001, 32(10): 1415-1424.
[21]  Hu J L, Jiang Y M. Modeling formability of multiaxial warp knitted fabrics on a hemisphere [J]. Composites: Part A, 2002, 33: 725-734.
[22]  Hancock S G, Potter K D. The use of kinematic drape modelling to inform the hand lay-up of complex composite components using woven reinforcements [J]. Composites: Part A, 2006, 37: 413-422.
[23]  Boisse P, Cherouat A, Gelin J C, Sabhi H. Experimental study and finite element simulation of a glass fiber fabric shaping process [J]. Polymer Composites, 1995, 16(1): 83-95.
[24]  Fischer P, Krzywinski S, Rodel H, Schenk A, Ulbricht V. Simulating the drape behavior of fabrics [J]. Textile Research Journal, 1999, 69(5): 331-334.
[25]  Sidhu R M J S, Averill R C, Riaz M, Pourboghrat F. Finite element analysis of textile composite preform stamping [J]. Composite Structures, 2001, 52(3/4): 483-497.
[26]  Sharma S B, Sutcliffe M P F. A simplified finite element model for draping of woven material [J]. Composites: Part A, 2004, 35: 637-643.
[27]  陈 利, 张一帆, 孙 绯, 等. 预定型平纹织物的剪切模型 [J]. 复合材料学报, 2010, 27(2): 154-160. Chen Li, Zhang Yifan, Sun Fei, et al. Shear model of tackified plain fabrics [J]. Acta Materiae Compositae Sinica, 2010, 27(2): 154-160.
[28]  张一帆, 陈 利, 孙 绯, 等. 预定型机织物剪切变形实验研究 [J]. 复合材料学报, 2009, 26(3): 29-34. Zhang Yifan, Chen Li, Sun Fei, et al. Experimental research on shear deformation of tackified woven fabrics [J]. Acta Materiae Compositae Sinica, 2009, 26(3): 29-34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133