全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含损伤复合材料剩余弹性模量预测的不确定分析

, PP. 146-150

Keywords: 复合材料,非概率方法,概率统计方法,不确定参数,剩余弹性模量

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统处理不确定问题概率统计方法的局限性,提出两种非概率分析方法对具有不确定参数的含损伤复合材料剩余弹性模量问题进行研究。非概率方法将不确定变量描述为一区间数或凸集合,再利用Taylor展开及区间四则运算,便可得到含损伤复合材料剩余弹性模量的区间范围。非概率分析方法优点在于:对于不确定参数数据信息依赖性较小,计算方法简单、实用,并且精度可满足工程要求。通过一数值算例的两种情况对含损伤层合板的相对剩余弹性模量进行计算,结果表明,所提出的两种非概率方法在不确定信息较少时,可以得到令人满意的结果。

References

[1]  Moore R E. Methods and applications of interval analysis [M]. Philadelphia: SIAML, 1979.
[2]  邱志平. 非概率集合理论凸方法及其应用 [M]. 北京: 国防工业出版社, 2005.
[3]  马 一. 含损伤复合材料性能预报的非概率方法初步研究. 北京: 北京航空航天大学, 2004.
[4]  王 军, 邱志平. 疲劳裂纹扩展的不确定理论 [J].北京航空航天大学学报, 2008, 34(12): 1428-1432. Wang Jun, Qiu Zhiping. Uncertain theory for fatigue crack extension [J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(12): 1428-1432.
[5]  刘文珽, 郑晏仲, 费斌军.概率断裂力学与概率损伤容限/耐久性 [M]. 北京: 北京航空航天大学出版社, 1999.
[6]  郦正能. 结构耐久性和损伤容限设计理论与方法 [M]. 北京: 北京航空航天大学出版社, 1998.
[7]  边文凤, 朱福宝. 层合板壳的概率有限元分析 [J]. 复合材料学报, 2000, 17(3): 120-123. Bian Wenfeng, Zhu Fubao. Stochastic finite elements laminated shells [J]. Acta Materiae Compositae Sinica, 2000, 17(3): 120-123.
[8]  卢子兴, 徐 强, 王伯平, 杨振宇. 含缺陷平纹机织复合材料拉伸力学行为数值模拟 [J]. 复合材料学报, 2011, 28(6): 200-207. Lu Zixing, Xu Qiang, Wang Boping, Yang Zhenyu. Numerical simulation of plain weave composites with defects under unidirectional tension [J]. Acta Materiae Compositae Sinica, 2011, 28(6): 200-207.
[9]  郭书祥. 非随机不确定结构的可靠性方法和优化设计研究. 西安: 西北工业大学, 2002.
[10]  Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scare knowledge is present on acoustic excitation parameters [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 104(2): 187-209.
[11]  Elishakoff I, Elisseeff P G, Stewart A L. Non-probabilistic, convex-theoretic modeling of scatter in material properties [J]. AIAA Journal, 1994, 32(4): 843-849.
[12]  Ben-Haim Y, Chen G, Soong T T. Maximum structural response using convex models [J]. ASCE Journal of Engineering Mechanics, 1996, 122(4): 325-333.
[13]  Qiu Z P. Comparison of static response of structures using convex models and interval analysis method [J]. International Journal for Numerical Methods in Engineering, 2003, 56: 1735-1753.
[14]  Qiu Z P, Wang X J. Two non-probabilistic set-theoretical models for dynamic response and buckling failure measures of bars with unknown-but-bounded initial imperfections [J]. International Journal of Solids and Structures, 2005, 42(3/4): 1039-1054.
[15]  Qiu Z P, Lin Q, Wang X J. Convex models and probabilistic approach of nonlinear fatigue failure [J]. Journal of Engineering Mechanics, 1987, 113(9): 1319-1336.
[16]  Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis [J]. AIAA Journal, 1997, 35(4): 725-735.
[17]  Qiu Z P, Elishakoff I. Antioptimnization of structures with large uncertain-but-non-random parameters via interval analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152: 361-372.
[18]  Mcwilliam S. Anti-optimization of uncertain structures using interval analysis [J]. Computers & Structures, 2001, 79(4): 421-430.
[19]  王 军, 邱志平, 王晓军. 应力强度因子的区间分析方法 [J]. 航空学报, 2008, 29(3): 611-615. Wang Jun, Qiu Zhiping, Wang Xiaojun. Interval analysis for stress intensity factors [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 611-615.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133