全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯与多壁碳纳米管增强环氧树脂复合材料的制备及性能

, PP. 53-60

Keywords: 石墨烯,多壁碳纳米管,功能化,复合材料,力学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

对多壁碳管(MWCNTs)进行改性处理得到酸化碳管(MWCNTs-COOH)和环氧化碳管(MWCNTs-Epon828),将石墨烯(Graphene)与不同的碳管分别混合,制备出三种Graphene-MWCNTs/环氧树脂(EP)复合材料。通过拉伸和热重实验研究了石墨烯与MWCNTs的协同作用、两者的含量以及MWCNTs功能化方法对复合材料力学和热学性能的影响。结果表明:石墨烯与MWCNTs的协同增强明显优于MWCNTs单独增强。当石墨烯和MWCNTs质量分数仅为0.1%时,Graphene-MWCNTs-Epon828/EP的拉伸强度达最大值,其拉伸强度、弹性模量和断裂伸长率分别较纯EP增加了35%、65%和34%。石墨烯和MWCNTs的加入使Graphene-MWCNTs/EP复合材料的热稳定性均有所提高。

References

[1]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
[2]  McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J]. Chem Mater, 2007, 19: 4396-4404.
[3]  Paci J T, Belytschko T, Schatz G C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide [J]. J Phys Chem C, 2007, 111: 18099-18111.
[4]  Verdejo R, Barroso-Bujans F, Rodriguez-Perez M A, et al. Functionalized graphene sheet filled silicone foam nanocomposites [J]. J Mater Chem, 2008, 18: 2221-2226.
[5]  Watcharotone S, Dmitriy A D, Stankovich S, et al. Graphene-silica composite thin films as transparent conductors [J]. Nano Lett, 2007, 7(7): 1888-1892.
[6]  Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliate graphite oxide in the presence of poly (sodium 4-styrenesulfonate) [J]. J Mater Chem, 2006, 16: 155-158.
[7]  Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007, 446: 60-63.
[8]  Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457: 706-710.
[9]  Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition [J]. Nano Letters, 2009, 9(1): 30-35.
[10]  Tung V C, Allen M J, Yang Y, Kaner R B. High-throughput solution processing of large-scale graphene [J]. Nature Nanotechnology, 2009, 4: 25-29.
[11]  Liang J J, Xu Y F, Huang Y, et al. Infrared-triggered actuators from graphene-based nanocomposites [J]. J Phys Chem C, 2009, 113(22): 9921-9927.
[12]  Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites [J]. Nature Nanotechnology, 2008, 3: 327-331.
[13]  Rafiee M A, Rafiee J, Srivastava I, et al. Fracture and fatigue in graphene nanocomposites [J]. Small, 2010, 6(2): 179-183.
[14]  Yang S Y, Lin W N, Huang Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites [J]. Carbon, 2011, 49, 793-803.
[15]  卫保娟, 郑伟玲, 肖 潭, 吴 萍. 混杂功能化多壁碳纳米碳管/环氧树脂复合材料的制备及性能 [J]. 复合材料学报, 2011, 28(5): 27-33. Wei Baojuan, Zheng Weiling, Xiao Tan, Wu Ping. Preparation and properties of hybrid functionalized multi-walled carbon nanotubes/epoxy resin composite [J]. Acta Materiae Compositae Sinica, 2011, 28(5): 27-33.
[16]  Yu R, Feng L, Hui M C. Tension fatigue behavior of unidirectional single walled carbon nanotube reinforced epoxy composite [J]. Carbon, 2003, 41(11): 2177-2179.
[17]  Zhang P H, Lammert P E, Crespi V H. Plastic deformations of carbon nanotubes [J]. Phys Rev Lett, 1998, 81(24): 5346-5349.
[18]  Riehard P, Prasse T, Cavaille J Y, et al. Reinforcement of rubbery epoxy by carbon nanofibres [J]. Materials Science and Engineering A, 2003, 352(1): 344-348.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133