全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于纳米压痕技术的碳纤维/环氧树脂复合材料各组分原位力学性能测试

, PP. 209-214

Keywords: 纳米压痕,复合材料,原位力学性能,弹性模量,硬度,蠕变性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于纳米压痕技术对碳纤维/环氧树脂复合材料各组分的原位硬度、弹性模量和蠕变性能进行了测试,实验得到了基体、纤维和微小厚度界面层的力学性能。结果表明,从环氧树脂基体到碳纤维过渡过程中,硬度和弹性模量有明显的梯度变化,并且纤维和树脂基体的原位弹性模量平均值与其非原位性能有一定的变化,实验得到纤维的原位弹性模量有所下降,环氧树脂的弹性模量有所增加。试件制备过程中的机械研磨对其表面产生的残余应力和复合后两种材料的相互影响是组分材料原位性能变化的主要原因。各组分的蠕变性能呈现出明显的差异。

References

[1]  Lin C B, Chang R J, Weng W P. A study on process and tribological behaviour of Al alloy/Gr [J]. Composite, 1998, 217: 167-174.
[2]  Lancin M, Marhic C. TEM study of carbon fiber reinforced aluminium matrix composites: Influence of brittle phases and interface on mechanical properties [J]. Journal of the European Ceramic Society, 2000, 20:1493-1503.
[3]  Vidal-Setif M H, Lancin M, Marhic C, et al. On the role of brittle interfacial phases on the mechanical properties of carbon fire reinforced Al-based matrix composites [J]. Materials Science and Engineering A, 1999, 272: 321-333.
[4]  Ryu Y M, Yoon E P, Rhee M H. NCG reinforced MMC fabricated by squeeze casting method [J]. Applied Composite Materials, 2000, 7: 251-267.
[5]  谭祥军, 杨庆生. 增强相分布方式对复合材料有效力学性能的影响 [J]. 宇航材料工艺, 2008, 38(1): 23-27. Tan Xiangjun, Yang Qingsheng. Influence of microstructure on effective mechanical properties of composite material [J]. Aerospace Materials &Technology, 2008, 38(1): 23-27.
[6]  谭祥军, 杨庆生. 纤维束分布对复合材料有效性能的影响 [J]. 复合材料学报, 2009, 26(3): 188-194. Tan Xiangjun, Yang Qingsheng. Influence of microstructure on effective properties of fiber bundle reinforced [J]. Acta Materiae Compositae Sinica, 2009, 26(3): 188-194.
[7]  窦君智, 郭 策, 戴振东. 东方龙虱鞘翅内表皮层及断面硬度和弹性模量 [J]. 复合材料学报, 2011, 28(5): 181-185. Dou Junzhi, Guo Ce, Dai Zhendong. Mechanical properties of the exocuticle and sections of Cybister elytra [J]. Acta Materiae Compositae Sinica, 2011, 28(5): 181-185.
[8]  Christopher A, Chuh S. Nanoindentation studies of materials [J]. Materials Today, 2006, 9(5): 32-40.
[9]  Lucca D A, Herrmann K, Klopfstein M J. Nanoindentation: Measuring methods and applications [J]. CIRP Annals-Manufacturing Technology, 2010, 59: 803-819.
[10]  Di Z, Carpentier M L. Development of a micro-indentation modeled simulating different mechanical responses of the fiber/matrix interface [J]. Composites Science and Technology, 2001, 61: 369-375.
[11]  International Standard. ISO 14577-2002. Metallic materials-instrumented indentation test for hardness and materials parameters [S].
[12]  Kim J K, Mai Y W, Chou T W, et al. Interfaces in structure and properties of composites [J]. Materials Science and Technology, 1993, 13: 229-289.
[13]  Tehrani M, Safdari M, Al-Haik M S. Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite [J]. International Journal of Plasticity, 2011, 27(6): 887-901.
[14]  Uren A, Rams J. Characterization of interfacial mechanical properties in carbon fiber/aluminum matrix composites by the nanoindentation technique [J]. Composites Science and Technology, 2005, 65: 2025-2038.
[15]  Hua W S, Wu X F. Nanohardness and elastic modulus at the interface of TiCx/Ni3Al composites determined by the nanoindentation technique [J]. Appl Surf Interface Anal, 2004, 36: 143-147.
[16]  Li X, Bhushan B. A review of nanoindentation continuous stiffness measurements technique and its applications [J]. Master Characterization, 2002, 38: 11-36.
[17]  Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Materials, 1992, 7: 1564-1583.
[18]  Oliver W C, Pharr G M, Brotzen F R. On the generality of the relationship among contact stiffness, contact area and elastic modulus during indentation [J]. Journal of Materials Research, 1992, 7(3): 613-617.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133