Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[2]
Wang L, Liang G C, Ou X Q, et al. Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction [J]. Journal of Power Sources, 2009, 189(1): 423-428.
[3]
Hsu K F, Tsay S Y, Hwang B J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route[J]. Journal of Materials Chemistry, 2004, 14(17): 2690-2695.
[4]
Lee M H, Kim J Y, Song H K. A hollow sphere secondary structure of LiFePO4 nanoparticles [J]. Chemical Communications, 2010, 46(36): 6795-6797.
[5]
Wang Y, Cao G. Developments in nanostructured cathode materials for highperformance lithium-ion batteries [J]. Advanced Materials, 2008, 20(12): 2251-2269.
[6]
Bilecka I, Hintennach A, Djerdj I, et al. Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability [J]. Journal of Materials Chemistry, 2009, 19(29): 5125-5128.
[7]
Zhao J Q, He J P, Zhou J H, et al. Facile synthesis for LiFePO4 nanospheres in tridimensional porous carbon framework for lithium ion batteries [J]. The Journal of Physical Chemistry C, 2011, 115(6): 2888-2894.
[8]
Oh S W, Myung S T , Oh S M, et al. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries [J]. Advanced Materials, 2010, 22(43), 4842-4845.
[9]
Zaghib K, Mauger A, Gendron F, et al. Surface effects on the physical and electrochemical properties of thin LiFePO4 particles [J]. Chemistry of Materials, 2008, 20(2): 462-469.
[10]
Wang L N, Zhang Z G, Zhang K L. A simple, cheap soft synthesis routine for LiFePO4 using iron ( Ⅲ ) raw material [J]. Journal of Power Sources, 2007, 167(1): 200-205.
[11]
Pan M S, Zhou Z T. Carbon rich surface of LiFePO4 grain enhancing its rate capability [J]. Materials Letters, 2011, 65(7): 1131-1133.
[12]
Shin H C, Park S B, Jang H, et al. Rate performance and structural change of Cr-doped LiFePO4/C during cycling [J]. Electrochimica Acta, 2008, 53(27): 7946-7951.
[13]
Liu H, Cao Q, Fu L J. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8(10): 1553-1557.
[14]
Sun C S, Zhang Y, Zhang X J, et al. Structural and electrochemical properties of Cl-doped LiFePO4/C [J]. Journal of Power Sources, 2010, 195(11): 3680-3683.
[15]
Lin Y, Li F J, Yan L M, et al. Synthesis and characterization of LiFe0.99Mn0.01(PO4)2.99/3F0.01/C as a cathode material for lithium-ion battery [J]. Journal of Solid State Electrochemistry, 2010, 14(6): 1001-1005.
[16]
Wang D, Li H, Shi S, et al. Improving the rate performance of LiFePO4 by Fe-site doping [J]. Electrochimica Acta, 2005, 50(14): 2955-2958.
[17]
Gabrisch H, Wilcox J D, Doeff M M. Carbon surface layers on a high-rate LiFePO4 [J]. Electrochemical and Solid-State Letters, 2006, 9(7): 360-363.
[18]
Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J]. Journal of Power Sources, 2007, 163(2): 1064-1069.
[19]
Cho Y D, Feya G T K, Kao H M. The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes [J]. Journal of Power Sources, 2009, 189(1): 256-262.
[20]
Cao Y L, Yu L H, Li T, et al. Synthesis and electrochemical characterization of carbon-coated nanocrystalline LiFePO4 prepared by polyacrylates-pyrolysis route [J]. Journal of Power Sources, 2007, 172(2): 913-918.
[21]
Huang Y G, Ren H B, Peng Z H, et al. Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method [J]. Electrochimica Acta, 2009, 55(1): 311-315.
[22]
Chang Z R, Lv H J, Tang H W, et al. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries [J]. Electrochimica Acta, 2009, 54(20): 4595-4599.
[23]
Zhao J Q, He J P, Zhou J H, et al. Facile synthesis for LiFePO4 nanospheres in tridimensional porous carbon framework for lithium [J]. The Journal of Physical Chemistry C, 2011, 115(6): 2888-2894.
[24]
唐浩林, 潘 牧, 赵修建. 溶胶凝胶法制备α-Al2O3纳米材料团聚控制研究新进展 [J]. 材料导报, 2002, 16(9): 44-55. Tang Haolin, Pan Mu, Zhao Xiujian. Progress in research on agglomeration control in synthesizing α- Al2O3 nanometer materials by sol-gel technique [J]. Materials Review, 2002, 16(9): 44-55.
[25]
李召好, 李法强, 马培华. 超细粉末团聚机理及其消除方法 [J]. 盐湖研究, 2005, 13(1): 31-35. Li Zhaohao, Li Faqiang, Ma Peihua. Eliminetion methods and mechanism of agglomeration of ultrafine powders [J]. Journal of Salt Lake Research, 2005, 13(1): 31-35.
[26]
鹿海军, 梁国正, 张宝艳, 陈祥宝, 马晓艳. 球磨分散法制备新型改性粘土/环氧纳米复合材料的结构与性能 [J]. 复合材料学报, 2005, 22(1): 6-10. Lu Haijun, Liang Guozheng, Zhang Baoyan, Chen Xiangbao, Ma Xiaoyan. Structure and mechanical properties of newly modified clay/epoxy nanocomposites prepared by ball milling [J]. Acta Materiae Compositae Sinica, 2005, 12(1): 6-10.
[27]
Tuinstra F. Koenig J L. Raman spectrum of graphite [J]. Journal of Chemical Physics, 1970, 53(3): 1126-1130.
[28]
Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B, 2000, 61(20): 14095-14107.
[29]
Doeff M M, Wilcox J D, Kostecki R, et al. Optimization of carbon coatings on LiFePO4 [J]. Journal of Power Sources, 2006, 163(1): 180-184.
[30]
Nakamura T, Miwa Y, Tabuchi M, et al. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties [J]. Journal of the Electrochemical Society, 2006, 153(6): 1108-1114.
[31]
Delacourt C, Poizot P, Levasseur S. et al. Size effects on carbon-free LiFePO4 powders [J]. Electrochemical and Solid-State Letters A, 2006, 9(7): 352-355.
[32]
Gaberscek M, Dominko R, Jamnik J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes [J]. Electrochemistry Communications, 2007, 9(12): 2778-2783.