Pape H C, Evans A, Kobbe P. Autologous bone graft: Properties and techniques [J]. Journal of Orthopaedic Trauma, 2010, 24(S1): S36-S40.
[2]
Christopher G, Finkemeier M D. Bone-grafting and bone-graft substitutes [J]. The Journal of Bone & Joint Surgery, 2002, 84(3): 454-464.
[3]
邱贵兴, 孙世荃. 同种异体骨植入材料的临床应用 [J]. 中华骨科杂志, 2004, 24(10): 635-637. Qiu Guixing, Sun Shiquan. Clinical application of bone allograft [J]. Chinese Journal of Orthopaedics, 2004, 24(10): 635-637.
[4]
李玉宝. 生物医学材料 [M]. 北京: 化学工业出版社, 2003. Li Yubao. Biomedical materials [M]. Beijing: Chemical Industry Press, 2003.
[5]
应小樟, 徐华梓. 硫酸钙制剂在骨科的应用 [J]. 国际骨科杂志, 2006, 27(2): 86-88. Ying Xiaozhang, Xu Huazi. The application of calcium sulfate in the orthopaedic preparations [J]. International Orthopaedic Magazine, 2006, 27(2): 86-88.
[6]
张杜娟, 张丽芳, 张志萍, 等. 骨修复复合材料CSH/BGs的制备及其性能研究 [J]. 合成化学, 2008, 16(6): 624-627. Zhang Dujuan, Zhang Lifang, Zhang Zhiping, et al. Preparation of bone repairing composite material CSH/BGs and its performance investigation [J]. Chinese Journal of Synthetic Chemistry, 2008, 16(6): 624-627.
[7]
Nilsson M, Wang J S, Wielanek L, et al. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute [J]. J Bone Joint Surg Br, 2004, 86(1): 120-125.
[8]
张永莉, 霍书娟, 高建平, 等. 明胶/硫酸钙复合生物材料 [J]. 高分子材料科学与工程, 2006, 22(1): 215-217 Zhang Yongli, Huo Shujuan, Gao Jianping, et al. CLGEL/CS composite biomaterial [J]. Polymer Materials Science and Engineering, 2006, 22(1): 215-217.
[9]
王振林, 闫玉华, 万 涛. 羟基磷灰石/胶原类骨仿生复合材料的制备及表征 [J]. 复合材料学报, 2005, 22(2): 83-86. Wang Zhenlin, Yan Yuhua, Wan Tao. Preparation and characterization of hydroxyapatite/collagen bone-like biomimetic composite [J]. Acta Materiae Compositae Sinica, 2005, 22(2): 83-86.
俞 猛. 骨组织工程支架材料修复骨缺损的特性 [J]. 中国组织工程研究与临床康复, 2010, 14(47): 8869-8872. Yu Meng. Characteristics of bone tissue engineering scaffold materials for repair of bone defects [J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(47): 8869-8872.
[12]
Wang Xuejiang, Li Yubao, Wei Jie, et al. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites [J]. Biomaterials, 2002, 23(24): 4787-4791.
[13]
李 鸿, 南景天, 吕国玉, 等. 新型可降解 α-TCP/多元氨基酸共聚物复合材料制备与表征 [J]. 复合材料学报, 2010, 27(4): 26-30. Li Hong, Nan Jingtian, Lü Guoyu, et al. Novel degradable α-TCP/multi-(amino acid ) copolymer composite: Preparation and characterization [J]. Acta Materiae Compositae Sinica, 2010, 27(4): 26-30.
[14]
张玉玲, 黄君礼, 程志辉, 等. 改性聚天冬氨酸的热缩共聚合成 [J]. 现代化工, 2006, 26(3): 43-45. Zhang Yuling, Huang Junli, Cheng Zhihui, et al. Thermal polycondensation synthesis of modified polyaspartic acid [J]. Modern Chemical Industry, 2006, 26(3): 43-45.
[15]
朱 凌, 吴一弦, 王玲玲, 等. 天冬氨酸与谷氨酸共聚反应研究 [J]. 北京化工大学学报, 2007, 34(1): 49-52. Zhu Ling, Wu Yixian, Wang Lingling, et al. The copolycondensation of L-aspartic acid and L-glutamic acid [J]. Journal of Beijing University of Chemical Technology, 2007, 34(1): 49-52.
[16]
Schwamborn Michael. Chemical synthesis of polyaspartates: A biodegradable alternative to currently used polfcarboxylate homo-and copolymers [J]. Polymer Degradation and Stability, 1998, 59(1-3): 39-45.
[17]
毛克亚, 李江涛, 杨 云, 等. β-TCP/ α-CSH复合植骨材料固化性能与力学强度 [J]. 医用生物力学, 2010, 25(6): 456-478. Mao Keya, Li Jiangtao, Yang Yun, et al. Study on the setting property and compressive strength of β-TCP/ α-CSH combined bone graft [J]. Journal of Medical Biomechanics, 2010, 25(6): 456-478.
[18]
Kokubo Tadashi, Takadama Hiroaki. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials, 2006, 27(15): 2907-2915.
[19]
程艳玲, 赵玉娥, 王海玉, 等. 生物降解型聚谷氨酸的研究进展 [J]. 北京联合大学学报: 自然科学版, 2008, 22(2): 45-49. Cheng Yanling, Zhao Yu’e, Wang Haiyu, et al. Development of biodegradable polyglutamic acid [J]. Journal of Beijing Union University: Natural Sciences, 2008, 22(2): 45-49.
[20]
葛 亮, 苟三怀, 杨四川, 等. 复合纳米人工骨的注射、凝固及其机械性能研究[J]. 生物骨科材料与临床研究, 2006, 3(5): 4-8. Ge Liang, Gou Sanhuai, Yang Sichuan, et al. The injection, hardening and mechanical properties of a new composite nano-bone substitute [J]. Orthopaedic Biomechanics Materials and Clinicals, 2006, 3(5): 4-8.
[21]
张 民, 王建生, 卫小春, 等. 可注射性硫酸钙/羟基磷灰石骨替代物抗压强度的影响因 素[J]. 生物医学工程与临床, 2006, 10(3): 135-137. Zhang Min, Wang Jiansheng, Wei Xiaochun, et al. Factors influencing the compressive strength of an injectable calcium sulphate-hydroxyapatite bone subsititutes [J]. Biomedical Engineering and Clinical Medicine, 2006, 10(3): 135-137.
[22]
Safdar N K, Emre T, Joseph M L. Clinical applications of bone graft substitutes [J]. Orthop Clin North Am, 2000, 31(3): 389-398.
[23]
Spinelli A B, Ricci J L, Parsons J R. In vitro dissolution studies of calcium sulfate cements in simulated body fluid / / Procs 25th Annual Meeting of Society for Biomaterials. Providence, RI, USA: Society for Biomaterials, 1999, 344.
[24]
Turner T M, Urban R M, Gitelis S, et al. Resorption evaluation of a large bolus of calciumsulfate in a canine medullary defect [J]. Orthopedics, 2003, 26(5): 577-579.
[25]
Daveed D F, Vijay K L, Tobin N G, et al. Ex-vivo degradation of a poly(propylene glycol-fumarate) biodegradable particulate composite bone cement [J]. J Biomed Mater Res, 1997, 35(3): 383-389.
[26]
Lei Y, Rai B, Ho K H, et al. In vitro degradation of novel bioactive polycaprolactone: 20% tricalcium phosphate composite scaffolds for bone engineering [J]. Mater Sci Eng C, 2007, 27(2): 293-298.
[27]
Orava E, Korventausta J, Rosenberg M, et al. In vitro degradation of porous poly(DL-lactide-co-glycolide) (PLGA)/bioactive glass composite foams with a polar structure [J]. Polymer Degradation and Stability, 2007, 92(1): 14-23.