全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯/聚苯胺复合材料的电磁屏蔽性能

, PP. 22-26

Keywords: 石墨烯,聚苯胺,电磁干扰,微波吸收,屏蔽效能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用直流电弧放电法制备高结晶性石墨烯,利用乙醇助溶分散法得到石墨烯/聚苯胺电磁屏蔽复合材料,研究不同掺杂比例的石墨烯/聚苯胺复合材料的电磁屏蔽性能。拉曼光谱分析表明:由于石墨烯与聚苯胺之间的相互作用,复合材料中聚苯胺特征峰比纯聚苯胺特征峰稍弱或向低频方向移动。复合物的电导率随石墨烯掺杂量的增加而增大,当掺杂质量分数为25%时,其电导率达到19.4S/cm,接近纯石墨烯电导率(20.1S/cm)。频率为2~18GHz时,复合材料的电磁屏蔽效能随着石墨烯掺杂量和频率的增大而增强;当石墨烯掺杂质量分数为25%时,总屏蔽效能在2~18GHz范围内由19.8dB增至34.2dB,增加了约42%,其中吸收部分占总屏蔽效能的比例为66%~81%,这表明石墨烯/聚苯胺复合材料的电磁屏蔽性质是以电磁波吸收为主;同时也说明了拥有特殊结构与特性的石墨烯是一种较好的聚苯胺填料,在微波屏蔽与微波吸收领域将会有广阔的应用前景。

References

[1]  王 睿, 万怡灶, 何 芳, 等. 碳纤维连续镀镍生产工艺及其屏蔽复合材料 [J]. 复合材料学报, 2010, 27(5): 19-23. Wang Rui, Wan Yizhao, He Fang, et al. Nickel-plated carbon fiber continuous production process and its shielding composites [J]. Acta Materiae Compositae Sinica, 2010, 27(5): 19-23.
[2]  Jiang G, Gilbert M, Hitt D, et al. Preparation of nickel coated mica as a conductive filler [J]. Composites Part A, 2002, 33(5): 745-751.
[3]  Bhadra S, Khastgir D, Singha N K, Lee J H. Progress in preparation, processing and applications of polyaniline [J]. Progress in Polymer Science, 2009, 34(8): 783-810.
[4]  马文石, 邓帮君. 纳米功能化石墨烯/室温硫化硅橡胶复合材料的制备与表征 [J]. 复合材料学报, 2011, 28(4): 40-45. Ma Wenshi, Deng Bangjun. Preparation and characterization of nano functionalized graphene/room temperature vulcanized silicone rubber composites [J]. Acta Materiae Compositae Sinica, 2011, 28(4): 40-45.
[5]  Wu Q, Xu Y X, Yao Z Y, et al. Super capacitors based on flexible graphene/polyaniline nanofiber composite films [J]. ACS Nano, 2010, 4(4): 1963-1970.
[6]  Goswami S, Maiti U N, Nandy S, et al. Preparation of graphene-polyaniline composites by simple chemical procedure and its improved field emission properties [J]. Carbon, 2011, 49(7): 2245-2252.
[7]  Zhao X L, Ohkohchi M, Inoue S, et al. Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge [J]. Diamond & Related Materials, 2006, 15(4): 1098-1102.
[8]  Im J S, Kim Gu, Lee S H, et al. Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2010, 364(1): 151-157.
[9]  Wang Z Y, Li Nan, Shi Z J, et al. Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air [J]. Nanotechnology, 2010, 21(17): 1-4.
[10]  Li N, Wang Z Y, Zhao K K, et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method [J]. Carbon, 2010, 48(1): 255-259.
[11]  Lafuente E, Callejas M A, Sainz R, et al. The influence of single-walled carbon nanotube functionalization on the electronic properties of their polyaniline composites [J]. Carbon, 2008, 46(14): 1909-1917.
[12]  Yan J, Wei T, Shao S, et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance [J]. Carbon, 2010, 48(2): 487-493.
[13]  Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites [J]. Carbon, 2009, 47(1): 2-22.
[14]  Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48(3): 788-796.
[15]  Al-Saleh M H, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites [J]. Carbon, 2009, 47(7): 1738-1746.
[16]  Sharma B, Khare N, Sharma R, et al. Dielectric behavior of polyaniline-CNTs composite in microwave region [J]. Composites Science and Technology, 2009, 69(11): 1932-1935.
[17]  Lakshmi K, John H, Mathew K T, et al. Microwave absorption, reflection and EMI shielding of PU-PANI composite [J]. Acta Materialia, 2009, 57(2): 371-375.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133