全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米TiO2颗粒弱界面增强树脂基复合材料宏观力学行为有限元模拟

, PP. 236-243

Keywords: 纳米颗粒,弱界面,复合材料,随机模型,有限元分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于蒙特卡罗法,编写了随机分布颗粒增强复合材料的二维代表体积单元生成程序,建立了纳米颗粒增强树脂基复合材料的有限元模型,其中采用双线性内聚力模型描述复合材料弱界面的应力与位移关系。通过纳米TiO2颗粒增强环氧树脂基复合材料应力应变行为模拟结果与文献结果对比,证明了模型的有效性。讨论了弱界面情况下,TiO2颗粒质量分数与颗粒尺寸对复合材料宏观有效模量的影响,并对复合材料弱界面渐进损伤过程进行了非线性分析。结果表明:随着纳米TiO2颗粒质量分数增加,复合材料杨氏模量和断裂延伸率均有所增强,但材料屈服强度有所降低;相同颗粒质量分数情况下,随着颗粒尺寸的增大,颗粒与基体材料之间界面单元总长度减小,复合材料断裂延伸率有所下降。

References

[1]  Zhong Z, Meguid S A. On the elastic field of a spherical in-homogeneity with an imperfectly bonded interface [J]. Journal of Elasticity, 1997, 46(2): 91-113.
[2]  余湘彬, 仲 政. 弱界面颗粒增强复合材料的有效弹性模量 [J]. 同济大学学报, 2000, 28(3): 257-261. Yu Xiangbin, Zhong Zheng. Effective elastic modulus of particulate composite materials with imperfect interfaces [J]. Journal of Tongji University, 2000, 28(3): 257-261.
[3]  Tohgo K, Chou T W. Incremental theory of particulate-reinforced composites including debonding damage [J]. JSME Int J, 1996, 39(3): 389-397.
[4]  Tohgo K, Weng G J. A progressive damage mechanics in particle-reinforced metal-matrix composites under high triaxial tension [J]. ASME J Eng Mater Technol, 1994, 116(3): 414-420.
[5]  Tohgo K, Itoh Y, Shimamura Y S. A constitutive model of particulate-reinforced composites taking account of particle size effects and damage evolution [J]. Composites Part A, 2010, 41(2): 313-321.
[6]  Nan C W, Clarke D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites [J]. Acta Mater, 1996, 44(9):3801-3811.
[7]  Al-Turaif Hamad A. Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin [J]. Progress in. Organic Coatings, 2010, 69(3): 241-246.
[8]  Zhao Rongguo, Luo Wenbo. Fracture surface analysis onnano-SiO2/epoxy composite [J]. Materials Science and Engineering A, 2008, 483-481: 313-315.
[9]  Byung K C, Sang P W, Dai L G. Fracture toughness of the nano-particle reinforced epoxy composite [J]. Composite Structures, 2008, 86(1-3): 69-77.
[10]  Yao X F, Zhou D, Yeh H Y. Macro/microscopic fracture characterizations of SiO2/epoxy nanocomposites [J]. Aerospace Science and Technology, 2008, 12(3): 223-230.
[11]  Fu S Y, Feng X Q, Lauke B, Mai Y W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites [J]. Composites Part B, 2008, 39(6): 933-961.
[12]  Segurado J, Llorca J. A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites [J]. Acta Mater, 2005, 53(18): 4931-4942.
[13]  Segurado J, Llorca J. Computational micromechanics of composites: The effect of particle spatial distribution [J]. Mech Mater, 2006, 38(8-10): 873-883.
[14]  Wang X Q, Zhang J F, Wang Z Q, Zhou S, Sun X Y. Effects of interphase properties in unidirectional fiber reinforced composite materials [J]. Materials and Design, 2011, 32(6): 3486-3492.
[15]  Wang Z Q, Wang X Q, Zhang J F, Liang W Y, Zhou L M. Automatic generation of random distribution of fibers in long-fiber-reinforced composites and mesomechanical simulation [J]. Materials and Design, 2011, 32(2): 885-891.
[16]  孙志刚, 宋迎东, 廉英琦. 弱界面粘结对复合材料有效性能的影响 [J]. 航空动力学报, 2005, 20(6): 915-919. Sun Zhigang, Song Yingdong, Lian Yingqi. Composite mechanical behavior with weak interfacial bonding [J]. Journal of Aerospace Power, 2005, 20(6): 915-919.
[17]  赵朋飞, 尚福林, 闫亚宾, 魏孔军. 纳米悬臂梁Si/Cu界面破坏的弹塑性内聚力模拟 [J]. 固体力学学报, 2011, 32(1): 10-20. Zhao Pengfei, Shang Fulin, Yan Yabin, Wei Kongjun. Elasto-plastic cohesive zone modeling of delamination of Si/Cu interface in a nano-cantilever [J]. Chinese Journal of Solid Mehcanics, 2011, 32(1): 10-20.
[18]  王艳飞, 巩建鸣, 蒋文春, 姜 勇, 唐建群. 基于内聚力模型的AISI4135高强钢氢致滞后断裂数值模拟 [J]. 金属学报, 2011, 47(5): 594-600. Wang Yanfei, Gong Jianming, Jiang Wenchun, Jiang Yong, Tang Jianqun. Numerical simulation of hydrogen induced delayed fracture of AISI4135 high strength steel using cohesive zone modeling [J]. Acta Metallurgica Sinica , 2011, 47(5): 594-600.
[19]  Needleman A. Continuum model for void nucleation by inclusion debonding [J]. J Appl Mech, 1987, 54(3): 525-531.
[20]  Yang Z J, Su X T, Chen J F, Liu G H. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials [J]. International Journal of Solids and Structures, 2009, 46(17): 3222-3234.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133