Zhong Z, Meguid S A. On the elastic field of a spherical in-homogeneity with an imperfectly bonded interface [J]. Journal of Elasticity, 1997, 46(2): 91-113.
Tohgo K, Chou T W. Incremental theory of particulate-reinforced composites including debonding damage [J]. JSME Int J, 1996, 39(3): 389-397.
[4]
Tohgo K, Weng G J. A progressive damage mechanics in particle-reinforced metal-matrix composites under high triaxial tension [J]. ASME J Eng Mater Technol, 1994, 116(3): 414-420.
[5]
Tohgo K, Itoh Y, Shimamura Y S. A constitutive model of particulate-reinforced composites taking account of particle size effects and damage evolution [J]. Composites Part A, 2010, 41(2): 313-321.
[6]
Nan C W, Clarke D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites [J]. Acta Mater, 1996, 44(9):3801-3811.
[7]
Al-Turaif Hamad A. Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin [J]. Progress in. Organic Coatings, 2010, 69(3): 241-246.
[8]
Zhao Rongguo, Luo Wenbo. Fracture surface analysis onnano-SiO2/epoxy composite [J]. Materials Science and Engineering A, 2008, 483-481: 313-315.
[9]
Byung K C, Sang P W, Dai L G. Fracture toughness of the nano-particle reinforced epoxy composite [J]. Composite Structures, 2008, 86(1-3): 69-77.
[10]
Yao X F, Zhou D, Yeh H Y. Macro/microscopic fracture characterizations of SiO2/epoxy nanocomposites [J]. Aerospace Science and Technology, 2008, 12(3): 223-230.
[11]
Fu S Y, Feng X Q, Lauke B, Mai Y W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites [J]. Composites Part B, 2008, 39(6): 933-961.
[12]
Segurado J, Llorca J. A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites [J]. Acta Mater, 2005, 53(18): 4931-4942.
[13]
Segurado J, Llorca J. Computational micromechanics of composites: The effect of particle spatial distribution [J]. Mech Mater, 2006, 38(8-10): 873-883.
[14]
Wang X Q, Zhang J F, Wang Z Q, Zhou S, Sun X Y. Effects of interphase properties in unidirectional fiber reinforced composite materials [J]. Materials and Design, 2011, 32(6): 3486-3492.
[15]
Wang Z Q, Wang X Q, Zhang J F, Liang W Y, Zhou L M. Automatic generation of random distribution of fibers in long-fiber-reinforced composites and mesomechanical simulation [J]. Materials and Design, 2011, 32(2): 885-891.
[16]
孙志刚, 宋迎东, 廉英琦. 弱界面粘结对复合材料有效性能的影响 [J]. 航空动力学报, 2005, 20(6): 915-919. Sun Zhigang, Song Yingdong, Lian Yingqi. Composite mechanical behavior with weak interfacial bonding [J]. Journal of Aerospace Power, 2005, 20(6): 915-919.
[17]
赵朋飞, 尚福林, 闫亚宾, 魏孔军. 纳米悬臂梁Si/Cu界面破坏的弹塑性内聚力模拟 [J]. 固体力学学报, 2011, 32(1): 10-20. Zhao Pengfei, Shang Fulin, Yan Yabin, Wei Kongjun. Elasto-plastic cohesive zone modeling of delamination of Si/Cu interface in a nano-cantilever [J]. Chinese Journal of Solid Mehcanics, 2011, 32(1): 10-20.
[18]
王艳飞, 巩建鸣, 蒋文春, 姜 勇, 唐建群. 基于内聚力模型的AISI4135高强钢氢致滞后断裂数值模拟 [J]. 金属学报, 2011, 47(5): 594-600. Wang Yanfei, Gong Jianming, Jiang Wenchun, Jiang Yong, Tang Jianqun. Numerical simulation of hydrogen induced delayed fracture of AISI4135 high strength steel using cohesive zone modeling [J]. Acta Metallurgica Sinica , 2011, 47(5): 594-600.
[19]
Needleman A. Continuum model for void nucleation by inclusion debonding [J]. J Appl Mech, 1987, 54(3): 525-531.
[20]
Yang Z J, Su X T, Chen J F, Liu G H. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials [J]. International Journal of Solids and Structures, 2009, 46(17): 3222-3234.