全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳纳米纤维纸-玻纤/环氧复合材料对风力发电叶片的影响

, PP. 90-95

Keywords: 碳纳米纤维纸,冲蚀磨损,玻纤,复合材料,玻璃化转变温度,接触角

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对风力发电叶片在多风沙环境下的固体粒子冲蚀磨损行为,研究了风力发电叶片专用环氧树脂(EPIKOTETMRIM135、EPIKURETMRIMH137)、传统玻纤增强环氧复合材料和新型碳纳米纤维纸-玻纤/环氧复合材料的固体粒子冲蚀磨损行为,并测试了不同材料的玻璃化转变温度,进而对比分析了其对冲蚀磨损的影响;针对风力发电叶片在寒冷环境下表面容易结冰的现象,研究了上述三种材料表面的疏水性能,并测试了它们对水的接触角大小。结果表明:碳纳米纤维纸-玻纤/环氧复合材料具有良好的界面结合,且碳纳米纤维纸的引入提高了碳纳米纤维纸-玻纤/环氧复合材料的玻璃化转变温度(从55℃提高到63℃),从而改善了其耐固体粒子冲蚀磨损性能;同时,碳纳米纤维纸的加入改善了碳纳米纤维纸-玻纤/环氧复合材料的表面疏水性能(接触角从104°提高到131°)。

References

[1]  Herbert J G M, Iniyan S, Sreevalsan E, Rajapandian S. A review of wind energy technologies [J]. Renewable and Sustainable Energy Reviews, 2007, 11(6): 1117-1145.
[2]  Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance [J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 428-438.
[3]  van Rooij R P J O M, Timmer W A. Roughness sensitivity considerations for thick rotor blade airfoils [J]. Journal of Solar Energy Engineering, 2003, 125(4): 468-478.
[4]  Tilly G P. Sand erosion of metals and plastics: A brief review [J]. Wear, 1969, 14(4): 241-248.
[5]  Pool K V, Dharan C K H, Finnie I. Erosive wear of composite materials [J]. Wear, 1986, 107(1): 1-12.
[6]  Smeltzer C, EGulden M E, Compton W A. Mechanisms of metal removal by impacting dust particles [J]. Journal of Basic Engineering, 1970, 92(3): 639-654.
[7]  王小军, 房明浩, 孙浩然. 氧化铝陶瓷的热态固体粒子冲蚀磨损行为 [J]. 人工晶体学报, 2010, 39(6): 174-184. Wang Xiaojun, Fang Minghao, Sun Haoran. Solid particle erosion-wear behavior of alumina ceramics at high temperature [J]. Journal of Synthetic Crystals, 2010, 39(6): 174-184.
[8]  Movva S, Ouyang X L, Castro J, Lee J L. Carbon nanofiber paper and its effect on cure kinetics of low temperature epoxy resin [J]. Journal of Applied Polymer Science, 2012, 125(3): 2223-2230.
[9]  Miyazaki N, Takeda N. Solid particle erosion of fiber reinforced plastics [J]. Journal of Composite Materials, 1993, 27(1): 21-27.
[10]  Barkoula N M, Karger-Kocsis J. Effects of fiber content and relative fiber orientation on the solid particle erosion of GF/PP composites [J]. Wear, 2002, 252(1/2): 80-87.
[11]  Bond I P, Trask R S, Williams H R. Self healing materials: An alternative approach to 20 centuries of materials science [M]. New York: Springer Series in Materials Science, 2007: 115-120.
[12]  Tsiang T H. Test methods for design allowable for fibrous composites [M]. Philadelphia: American Society for Testing and Materials, 1989: 55-75.
[13]  Barkoula N M, Karger-Kocsis J. Solid particle erosion of unidirectional GF reinforced EP composites with different fiber/matrix adhesion [J]. Journal of Reinforced Plastics and Composites, 2002, 21(15): 1377-1388.
[14]  Zahavi J. Solid particle erosion of reinforced composite materials [J]. Wear, 1981, 71(2): 179-190.
[15]  Barkoula N M, Karger-Kocsis J. Review, processes and influencing parameters if the solid particle erosion of polymers and their composites [J]. Journal of Materials Science, 2002, 37(18): 3807-3820.
[16]  Lim Kyung-Bum, Lee Beak-Su, Kim Jong-Teak. Correlation of surface hydrophilcity and surface static properties in epoxy glass fiber after plasma treatment [J]. Surface and Interface Analysis, 2002, 33(6): 918-923.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133