Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277(26): 1971-1975.
[2]
Sharma P, Ganti S, Bhate N. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities [J]. Applied Physics Letters, 2003, 82(4): 535-537.
[3]
Davis M E. Ordered porous materials for emerging applications [J]. Nature, 2002, 417(6891): 813-821.
[4]
邹 波, 卢子兴. 中空纳米微球填充复合材料的有效力学性能 [J]. 力学学报, 2009, 41(2): 265-273. Zou Bo, Lu Zixing. Effective mechanical properties of solid filled by hollow nanospheres [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 265-273.
[5]
Chou T C, Ling T R, Yang M C, Liu C C. Micro and nano scale metal oxide hollow particles produced by spray precipitation in a liquid-liquid system [J]. Materials Science and Engineering A, 2003, 359(1/2): 24-30.
[6]
Zhao H, Li Y J, Liu R J, Zhao F Y, Hu Y Q. Synthesis method for silica needle-shaped nano-hollow structure [J]. Materials Letters, 2008, 62(19): 3401-3403.
[7]
Sharma P, Ganti S. Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies [J]. Journal of Applied Mechanics, 2004, 71(5): 663-671.
[8]
Xun F, Hu G K, Huang Z P. Effective in plane moduli of composites with a micropolar matrix and coated fibers [J]. International Journal of Solids and Structures, 2004, 41(1): 247-265.
[9]
Duan H L, Wang J, Huang Z P, Karihaloo B L. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1574-1596.
[10]
Lim C W, Li Z R, He L H. Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress [J]. International Journal of Solids and Structures, 2006, 43(17): 5055-5065.
[11]
Mogilevskaya S G, Crouch S L, Stolarski H K. Multiple interacting circular nano-inhomogeneities with surface/interface effects [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(6): 2298-2327.
[12]
Chen T Y. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects [J]. Acta Mechanica, 2008, 196(3/4): 205-217.
[13]
张双虎, 董相廷, 徐淑芝, 王进贤. 静电纺丝技术制备TiO2/SiO2复合中空纳米纤维与表征 [J]. 复合材料学报, 2008, 25(3): 138-143. Zhang Shuanghu, Dong Xiangting, Xu Shuzi, Wang Jinxian. Preparation and characterization of TiO2/SiO2 composite hollow nanofibres via an electrospinning technique [J]. Acta Materiae Compositae Sinica, 2008, 25(3): 138-143.
[14]
Luo J, Wang X. On the anti-plane shear of an elliptic nano inhomogeneity [J]. European Journal of Mechanics A, 2009, 28(5): 926-934.
[15]
Haftbaradaran H, Shodja H M. Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites [J]. International Journal of Solids and Structures, 2009, 46(16): 2978-2987.
[16]
Gurtin M E, Murdoch A I. A continuum theory of elastic material surfaces [J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323.
[17]
Gurtin M E, Murdoch A I. Surface stress in solids [J]. International Journal of Solids and Structures, 1978, 14(6): 431-440.
[18]
Gurtin M E, Weissmuller J, Larche F. A general theory of curved deformable interfaces in solids at equilibrium [J]. Philosophical Magazine A, 1998, 78(5): 1093-1109.
[19]
Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity [M]. Groningen: Noordhoff, 1953.
[20]
肖俊华, 徐耀玲. 纳米夹杂复合材料的有效反平面剪切模量研究 [J]. 固体力学学报, 2011, 32(3): 287-292. Xiao Junhua, Xu Yaoling. Study on the effective anti-plane shear modulus of nano inhomogeneity composite materials [J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 287-292.
[21]
Miller R E, Shenoy V B. Size-dependent elastic properties of nanosized structural elements [J]. Nanotechnology, 2000, 11(3): 139-147.