全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中空纳米夹杂填充复合材料的反平面问题

, PP. 190-195

Keywords: 反平面剪切模量,中空纳米夹杂,表/界面效应,夹杂尺寸依赖,广义自洽方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了中空纳米夹杂填充复合材料的反平面问题。基于Gurtin-Murdoch表/界面理论和广义自洽方法,给出了考虑夹杂界面效应时空隙-夹杂-基体-等效介质模型的全场精确解,并推导了中空纳米夹杂填充复合材料有效反平面剪切模量的闭合形式解。由本文结果的特殊情形,可以得到一系列有意义的解。数值结果表明:中空夹杂的尺寸在纳米量级时,复合材料的有效反平面剪切模量受表/界面效应影响显著;表/界面效应的影响随着夹杂尺寸的增大而逐渐减弱;当中空纳米夹杂的体积分数和外半径一定时,壁厚越薄其表/界面效应越大;在相同的夹杂外半径下,中空纳米夹杂填充复合材料的表/界面效应比实心纳米夹杂填充复合材料更加明显;无量纲反平面剪切模量受夹杂的表/界面性能和刚度影响显著,过高的夹杂刚度使得表/界面效应的影响变弱。

References

[1]  Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277(26): 1971-1975.
[2]  Sharma P, Ganti S, Bhate N. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities [J]. Applied Physics Letters, 2003, 82(4): 535-537.
[3]  Davis M E. Ordered porous materials for emerging applications [J]. Nature, 2002, 417(6891): 813-821.
[4]  邹 波, 卢子兴. 中空纳米微球填充复合材料的有效力学性能 [J]. 力学学报, 2009, 41(2): 265-273. Zou Bo, Lu Zixing. Effective mechanical properties of solid filled by hollow nanospheres [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 265-273.
[5]  Chou T C, Ling T R, Yang M C, Liu C C. Micro and nano scale metal oxide hollow particles produced by spray precipitation in a liquid-liquid system [J]. Materials Science and Engineering A, 2003, 359(1/2): 24-30.
[6]  Zhao H, Li Y J, Liu R J, Zhao F Y, Hu Y Q. Synthesis method for silica needle-shaped nano-hollow structure [J]. Materials Letters, 2008, 62(19): 3401-3403.
[7]  Sharma P, Ganti S. Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies [J]. Journal of Applied Mechanics, 2004, 71(5): 663-671.
[8]  Xun F, Hu G K, Huang Z P. Effective in plane moduli of composites with a micropolar matrix and coated fibers [J]. International Journal of Solids and Structures, 2004, 41(1): 247-265.
[9]  Duan H L, Wang J, Huang Z P, Karihaloo B L. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1574-1596.
[10]  Lim C W, Li Z R, He L H. Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress [J]. International Journal of Solids and Structures, 2006, 43(17): 5055-5065.
[11]  Mogilevskaya S G, Crouch S L, Stolarski H K. Multiple interacting circular nano-inhomogeneities with surface/interface effects [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(6): 2298-2327.
[12]  Chen T Y. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects [J]. Acta Mechanica, 2008, 196(3/4): 205-217.
[13]  张双虎, 董相廷, 徐淑芝, 王进贤. 静电纺丝技术制备TiO2/SiO2复合中空纳米纤维与表征 [J]. 复合材料学报, 2008, 25(3): 138-143. Zhang Shuanghu, Dong Xiangting, Xu Shuzi, Wang Jinxian. Preparation and characterization of TiO2/SiO2 composite hollow nanofibres via an electrospinning technique [J]. Acta Materiae Compositae Sinica, 2008, 25(3): 138-143.
[14]  Luo J, Wang X. On the anti-plane shear of an elliptic nano inhomogeneity [J]. European Journal of Mechanics A, 2009, 28(5): 926-934.
[15]  Haftbaradaran H, Shodja H M. Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites [J]. International Journal of Solids and Structures, 2009, 46(16): 2978-2987.
[16]  Gurtin M E, Murdoch A I. A continuum theory of elastic material surfaces [J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323.
[17]  Gurtin M E, Murdoch A I. Surface stress in solids [J]. International Journal of Solids and Structures, 1978, 14(6): 431-440.
[18]  Gurtin M E, Weissmuller J, Larche F. A general theory of curved deformable interfaces in solids at equilibrium [J]. Philosophical Magazine A, 1998, 78(5): 1093-1109.
[19]  Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity [M]. Groningen: Noordhoff, 1953.
[20]  肖俊华, 徐耀玲. 纳米夹杂复合材料的有效反平面剪切模量研究 [J]. 固体力学学报, 2011, 32(3): 287-292. Xiao Junhua, Xu Yaoling. Study on the effective anti-plane shear modulus of nano inhomogeneity composite materials [J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 287-292.
[21]  Miller R E, Shenoy V B. Size-dependent elastic properties of nanosized structural elements [J]. Nanotechnology, 2000, 11(3): 139-147.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133