全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

梯度复合材料热传导分析的梯度单元法

, PP. 178-185

Keywords: 梯度单元,热传导分析,梯度复合材料,有限元方法,细观力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

给出了一种适用于梯度复合材料热传导分析的梯度单元,采用细观力学方法描述材料变化的热物理属性,通过线性插值和高阶插值温度场分别给出了4节点和8节点梯度单元随空间位置变化的热传导刚度矩阵。推导了在温度梯度载荷和热流密度载荷作用下,矩形梯度板的稳态温度场和热通量场精确解。基于该精确解对比了连续梯度模型和传统的离散梯度模型的热传导有限元计算结果,验证了梯度单元的有效性,并讨论了相关参数对梯度单元的影响。结果表明,梯度单元和均匀单元得到的温度场基本一致;当热载荷垂直于材料梯度方向时,梯度单元能够给出更加精确的局部热通量场;当热载荷平行于材料梯度方向时,4节点梯度单元性能恶化,8节点梯度单元和均匀单元的计算结果与精确解吻合很好。

References

[1]  Sladek J, Sladek V, Zhang C H. Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method [J]. Computational Materials Science, 2003, 28(3/4): 494-504.
[2]  陈建桥, 丁 亮. 功能梯度材料瞬态热传导问题的MLPG方法 [J]. 华中科技大学学报: 自然科学版, 2007, 35(4): 119-121. Chen Jianqiao, Ding Liang. A MLPG method of transient heat transference in FGMs [J]. J Huazhong Univ of Sci & Tech: Nature Science Edition, 2007, 35(4): 119-121.
[3]  Khosravifard A, Hematiyan M R, Marin L. Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method [J]. Applied Mathematical Modelling, 2011, 35(9): 4157-4174.
[4]  Sutradhar A, Paulino G H. The simple boundary element method for transient heat conduction in functionally graded materials [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(42-44): 4511-4539.
[5]  Fu Zhuojia, Chen Wen, Qin Qinghua. Boundary knot method for heat conduction in nonlinear functionally graded material [J]. Engineering Analysis with Boundary Elements, 2011, 35(5): 729-734.
[6]  许杨健, 涂代惠. 对流换热边界下变物性梯度功能材料板瞬态温度场有限元分析 [J]. 复合材料学报, 2003, 20(2): 94-99. Xu Yangjian, Tu Daihui. Transient temperature field analysis of functionally gradient material plate with temperature-dependent material properties under convective heat transfer boundary by finite element method [J]. Acta Materiae Compositae Sinica, 2003, 20(2): 94-99.
[7]  Charoensuk J, Vessakosol P. A high order control volume finite element procedure for transient heat conduction analysis of functionally graded materials [J]. Heat Mass Transfer, 2010, 46(11/12): 1261-1276.
[8]  Anlas G, Santare M H, Lambros J. Numerical calculation of stress intensity factors in functionally graded materials [J]. International Journal of Fracture, 2000, 104(2): 131-143.
[9]  张幸红, 李亚辉, 韩杰才, 王保林. TiC-Ni系功能梯度材料的断裂力学有限元分析 [J]. 复合材料学报, 2001, 18(4): 87-92. Zhang Xinghong, Li Yahui, Han Jiecai, Wang Baolin. Cracking problem analysis of TiC-Ni FGM using finite element method [J]. Acta Materiae Compositae Sinica, 2001, 18(4): 87-92.
[10]  Gu P, Dao M, Asaro R J. A simplified method for calculating the crack tip field of functionally graded materials using the domain integral [J]. Journal of Applied Mechanics, 1999, 66(1): 101-108.
[11]  Ayhan Ali O. Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements [J]. International Journal of Solids and Structures, 2007, 44(25/26): 8579-8599.
[12]  Kim J H, Paulino G H. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials [J]. Journal of Applied Mechanics, 2002, 69(4): 502-514.
[13]  Santare M H, Lambros J. Use of graded finite elements to model the behavior of nonhomogeneous materials [J]. Journal of Applied Mechanics, 2000, 67(4): 819-822.
[14]  Chen Biaosong, Tong Liyong. Thermomechanically coupled sensitivity analysis and design optimization of functionally graded materials [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(18-20): 1891-1911.
[15]  Nemat-Alla Mahmoud, Ahmed Khaled I E, Hassab-Allah Ibraheem. Elastic-plastic analysis of two-dimensional functionally graded materials under thermal loading [J]. International Journal of Solids and Structures, 2009, 46(14/15): 2774-2786.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133