全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ePTFE含量对ePTFE/Nafion复合质子交换膜力学性能的影响及其增强阈值

, PP. 22-26

Keywords: ePTFE多孔膜,复合质子交换膜,含量,拉伸强度,增强,阈值

Full-Text   Cite this paper   Add to My Lib

Abstract:

详细研究了ePTFE(expandedPoly-Tetra-Fluoro-Ethylene,多孔聚四氟乙烯)增强相含量对复合质子交换膜力学性能的影响。结果表明,增强相ePTFE体积分数对ePTFE/Nafion复合质子交换膜的物理增强存在一个阈值,其理论数值约为20.7%。当ePTFE增强相含量低于该值时,复合膜的断裂强度随ePTFE含量增加而减小;当ePTFE增强相含量高于该值时,复合膜的断裂强度随ePTFE含量增加而增大。ePTFE/Nafion复合质子交换膜的屈服强度随ePTFE含量的变化也表现出类似规律。

References

[1]  衣宝廉. 燃料电池——原理·技术·运用 [M]. 北京: 化学工业出版社, 2003: 202-206.
[2]  Fang Xiang, Shen Peikang, Song Shuqin. et al. Degradation of perfluorinated sulfonic acid films: An in-situ infrared spectro-electrochemical study [J]. Polymer Degradation and Stability, 2009, 94(10): 1707-1713.
[3]  Wu Jinfeng, Yuan X Z, Martin J J, et al. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies [J]. Journal of Power Source, 2008, 184(1): 104-119.
[4]  Lai Y H, Mittelsteadt C K, Gittleman C S, Dillard D A. Viscoelastic stress analysis of constrained proton exchange membranes under humidity cycling [J]. Journal of Fuel Cell Science and Technology, 2009, 6(2): 021002(13 pages)
[5]  Lai Y H, Mittelsteadt C K, Gittleman C S, Dillard D A. Viscoelastic stress model and mechanical characterizaton of perfluorosulfonic acid (PFSA) polymer electrolyte membranes //Shah R K, Ubong E U, Samuelsen S. 3rd International Conference on Fuel Cell Science, Engineering and Technology. Ypsilanti, Michigan: American Society of Mechanical Engineers, 2005: 161-167.
[6]  Tang Yaliang, Kusoglu A, Karlsson A M, et al. Mechanical properties of a reinforced composite polymer electrode membrane and its simulated performance in PEM fuel cells [J]. Journal of Power Sources, 2008, 175(2): 817-825.
[7]  Liu Fuqiang, Xing Danmin, Yu Jingrong, Zhang Huamin. Development of novel self-humidifying composite membranes for fuel cells [J]. Journal of Power Sources, 2003, 124(1): 81-89.
[8]  王晓恩, 肖立奇, 唐浩林, 潘 牧. 多孔PTFE膜基体厚度对复合质子交换膜性能的影响 [J]. 武汉理工大学学报, 2006, 28(z1): 437-444. Wang Xiaoen, Xiao Liqi, Tang Haolin, Pan Mu. Influence of the thickness on the performance of composite proton exchange membranes [J]. Journal of Wuhan University of Technology, 2006, 28(z1): 437-444.
[9]  Lin Hsiu-Li, Shen Kun-Sheng, Huang Lining. Effect of triton-X on the preparation of Nafion/PTFE composite membranes [J]. Journal of Membrane Science, 2004, 237(1/2): 1-7.
[10]  曾庆敦. 复合材料的细观破坏机制与强度 [M]. 北京: 科学出版社, 2002: 213-214.
[11]  肖长发. 纤维复合材料——纤维、 基体、 力学性能 [M]. 北京: 中国石化出版社, 1995: 10-14.
[12]  张双寅. 复合材料结构的力学性能 [M]. 北京: 北京理工大学出版社, 1992: 353-361.
[13]  罗吉祥, 唐 春, 郭 然. 纤维增强复合材料界面脱层和基体裂纹的模拟分析 [J]. 复合材料学报, 2009, 26(6): 201-209. Luo Jixiang, Tang Chun, Guo Ran. Numerical simulations of interfacial debonding and matrix cracking in fiber reinforced composites [J]. Acta Materiae Compositae Sinica, 2009, 26(6): 201-209.
[14]  Tang Haolin, Pan Mu, Jiang Sanping, et al. Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells [J]. Electrochimica Acta, 2007, 52(1/2): 5304-5311.
[15]  Tang Haolin, Pan Mu, Jiang S P, et al. Fabrication and characterization of improved PFSA/ePTFE composite polymer electrolyte membranes [J]. Journal of Membrane Science, 2007, 306(16): 298-306.
[16]  王善元, 张汝光. 纤维增强复合材料 [M]. 上海: 东华大学出版社, 1998: 141-142.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133