全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米功能化石墨烯/室温硫化硅橡胶复合材料的制备与表征

, PP. 40-45

Keywords: 氧化石墨,纳米功能化石墨烯,室温硫化硅橡胶,复合材料,补强

Full-Text   Cite this paper   Add to My Lib

Abstract:

用KH-550对氧化石墨进行改性,再对其进行还原,获得功能化石墨烯(FG),未经干燥的FG经超声处理后可以稳定分散在质量比9∶1的丙酮/水混合液中;在高速搅拌和超声分散条件下,将FG分散液分散到室温硫化(RTV)硅橡胶中,固化后得到纳米FG(nano-FG)/RTV硅橡胶复合材料。采用FTIR、TEM、SEM、XRD和DSC分析了FG及复合材料的结构和形貌。结果表明:KH-550连接到石墨烯片层表面上,使其片层起皱、折叠,部分发生了剥离,层间距增大到3.46;FG经过超声处理后剥离成透明至半透明的片层;nano-FG/RTV硅橡胶复合材料的断面结构为褶皱结构,不同于纯硅橡胶,也未出现微观相分离;与硅橡胶相比,复合材料的Tg、Tm和结晶度均有所提高。复合材料的力学性能测试结果表明,nano-FG对RTV硅橡胶具有明显的补强效果,当nano-FG质量分数为0.5%时,nano-FG/RTV硅橡胶复合材料的拉伸强度比纯RTV硅橡胶提高了一倍多,达到了0.43MPa;断裂伸长率也提高了52%,达到了265%。

References

[1]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5296): 666-669.
[2]  Bokobza L, Rahmani M. Carbon nanotubes: Exceptional reinforcing fillers for silicone rubbers [J]. Kautschuk Gummi Kunststoffe, 2009, 3(3): 112-117.
[3]  Yao Yuan, Liu Changhong, Fan Shoushan. Anisotropic conductance of the multiwall carbon nanotube array/silicone elastomer composite film [J]. Nanotechnology, 2006, 17(17): 4374-4378 .
[4]  Park S, Kim K J, Nam J D, et al. Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi-walled carbon nanotubes as a nanofiller [J]. Polymer Engineering and Science, 2007, 47(9): 1396-1405.
[5]  Vast L, Mekhalif Z, Fonseca A, et al. Preparation and electrical characterization of a silicone elastomer composite charged with multi-wall carbon nanotubes functionalized with 7-octenyltrichlorosilane [J]. Composites Science and Technology, 2007, 67(5): 880-889.
[6]  Chua T P, Mariatti M, Azizan A, et al. Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl siloxane) nanocomposites [J]. Composites Science and Technology, 2010, 70(4): 671-677.
[7]  刘 丰, 郑秋红, 李晓红, 等. 可分散性纳米二氧化硅增强硅橡胶 [J]. 复合材料学报, 2006, 23(6): 57-63. Liu Feng, Zhen Qiuhong, Li Xiaohong, et al. Silicone rubber reinforced by a dispersible nano-silica [J]. Acta Materiae Compositae Sinica, 2006, 23(6): 57-63.
[8]  张 琦, 田 明, 吴友平, 等. 纳米氢氧化镁/橡胶复合材料的分散特性及分散机理 [J]. 复合材料学报, 2003, 20(4): 88-95. Zhang Qi, Tian Ming, Wu Youping, et al. Dispersion structure and mechanism of the nano-magnesium hydroxide/rubber composites [J]. Acta Materiae Compositae Sinica, 2003, 20(4): 88-95.
[9]  Watcharotone S, Dikin D A, Stankovich S, et al. Graphene-silica composite thin films as transparent conductors [J]. Nano Letters, 2007, 7(7): 1888-1892.
[10]  Chou Shulei, Wang Jiazhao, Choucair M, et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite [J]. Electrochemistry Communications, 2010, 12 (2): 303-306.
[11]  Raquel V, Fabienne B, Miguel A R, et al. Functionalized graphene sheet filled silicone foam nanocomposites [J]. Journal of Materials Chemistry, 2008, 18(19): 2221-2226.
[12]  Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content [J]. ACS Nano, 2009, 3(12): 3884-3890.
[13]  Gao Jian, Liu Fang, Liu Yiliu, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid [J]. Chemistry of Materials, 2010, 22(7): 2213-2218.
[14]  Nguyen D A, Lee Y R, Raghu A V, et al. Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet [J]. Polymer International, 2009, 58(4): 412-417.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133