全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电场辅助原位合成TiB2-TiC-Ni/TiAl/Ti功能梯度材料及界面结构

, PP. 139-144

Keywords: TiB2-TiC复相陶瓷,功能梯度材料,FAPAS,界面微结构,原位合成

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用电场激活压力辅助合成技术(FAPAS)并结合原位反应的方法制备TiB2-TiC-Ni/TiAl/Ti功能梯度材料,研究了TiB2-TiC-Ni/TiAl/Ti功能梯度材料的界面微结构特征及其结合强度,分析了梯度材料界面的微观组织和元素分布,并分析了试样的抗剪切强度和显微硬度。研究表明:制备的TiB2-TiC-Ni/TiAl/Ti功能梯度材料组织致密,TiB2-TiC复合陶瓷晶粒细小且均匀分布;各层界面区形成了良好的扩散冶金结合,连接区剪切强度达85.878MPa。显微硬度由钛板到陶瓷层呈梯度变化,表层最大显微硬度达HV2760。

References

[1]  Vallauri D, Atias Adrian I C, Chrysanthou A. TiC-TiB2 composites: A review of phase relationships, processing and properties [J]. Journal of the European Ceramic Society, 2008, 28(8): 1697-1713.
[2]  Zhang X H, Zhu C C, Qu W, He X D, Kvanin V L. Self-propagating high temperature combustion synthesis of TiC/TiB2 ceramic-matrix composites [J]. Composites Science and Technology, 2002, 62(15): 2037-2041.
[3]  Matsushita J, Suzuki T, Sano A. Wire electrical discharge machining of TiB2 composite [J]. Journal of the Ceramic Society of Japan, 1992, 100(2): 219-222.
[4]  Andreev Y, Levashov E A, Sheveiko A. Electrochemical corrosion behavior of SHS-synthesized magnetron composite TiC-based targets and sputtered thin films [J]. Surface & Coatings Technology, 1997, 90(1): 42-52.
[5]  Kecskes L J, Kottke T, Niiler A. Microstructural properties of combustion-synthesized and dynamically consolidated titanium diboride and titanium carbide [J]. Journal of the American Ceramic Society, 1990, 73(5): 1274-1282.
[6]  Locci A M, Orru R, Cao G, Munir Z A. Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC-TiB2 composites [J]. Materials Science and Engineering A, 2006, 434(1/2): 23-29.
[7]  Yeh C L, Chen Y L. Combustion synthesis of TiC-TiB2 composites [J]. Journal of Alloys and Compounds, 2008, 463(1/2): 373-377.
[8]  Lee J W, Munir Z A, Ohyanagi M. Dense nanocrystalline TiB2-TiC composites formed by field activation from high-energy ball milled reactants [J]. Materials Science and Engineering A, 2002, 325(1/2): 221-227.
[9]  Locci A M, Licheri R, Orru R, et al, Mechanical and electric current activation of solid-solid reactions for the synthesis of fully dense advanced materials [J]. Chemical Engineering Science, 2007, 62(18/20): 4885-4890.
[10]  朱春城, 张幸红, 徐 强, 赫晓东. 自蔓延高温合成法制备TiB2-TiC复合陶瓷 [J]. 材料工程, 2002(2): 13-15. Zhu Chuncheng, Zhang Xinghong, Xu Qiang, He Xiaodong. Self-propagating high-temperature synthesis of TiB2-TiC ceramics [J]. Journal of Materials Engineering, 2002(2): 13-15.
[11]  Munir Z A, Anselmi-Tamburini U. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. Journal of Materials Science, 2006, 41(3): 763-777.
[12]  Ji G, Goran D, Bernard F, et al. Structure and composition heterogeneity of a FeAl alloy prepared by one-step synthesis and consolidation processing and their infiuence on grain size characterization [J]. Journal of Alloys and Compounds, 2006, 420(1/2): 158-164.
[13]  Gauthier V, Bernard F, Gaffet E, et al. Synthesis of nanocrystalline NbAl3 by mechanical and field activation [J]. Intermetallics, 2001, 9(7): 571-580.
[14]  Chen S P, Meng Q S, Liu W, Munir Z A. Titanium diboride-nickel graded materials prepared by field-activated, pressure-assisted synthesis process [J]. Journal of Materials Science, 2009, 44(4): 1121-1126.
[15]  叶 波, 李庆余, 赵恒勤. 梯度功能材料制备方法研究现状与展望 [J]. 矿产保护与利用, 2004, 4: 47-51. Ye Bo, Li Qingyu, Zhao Hengqin. Current status and prospects of the research in preparation of the functionally gradient materials [J]. Conservation and Utilization of Mineral Resources, 2004, 4: 47-51.
[16]  王朋波, 杨冠军, 毛小南. 放电等离子原位烧结制备TiC+TiB/Ti复合材料 [J]. 稀有金属材料与工程, 2007, 36 (3): 484-488. Wang Pengbo, Yang Guanjun, Mao Xiaonan. In-situ synthesis TiC+TiB/Ti composites by spark plasma sintering [J]. Rare Metal Materials and Engineering, 2007, 36(3): 484-488.
[17]  朱德贵, 尹显东, 肖传春. 原位合成TiB2-TiC-SiC陶瓷复合材料 [J]. 西南交通大学学报, 1999, 34(1): 71-75. Zhu Degui,Yin Xiandong, Xiao Chuanchun. In situ synthesized TiB2-TiC-SiC ceramic composite [J]. Journal of Southwest Jiaotong University, 1999, 34(1): 71-75.
[18]  Meng Q S, Chen S P, Shen Y L, et al. Microstructure and mechanical properties of graded materials prepared by field-activated and pressure-assisted combustion synthesis [J]. Key Engineering Materials, 2008, 368/372: 1876-1878.
[19]  方洪渊, 冯吉才. 材料连接过程中的界面行为 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2005: 193-196.
[20]  刘 咏, 黄伯云, 贺跃辉, 杨 兵. 元素粉末冶金方法制备TiAl基合金 [J]. 粉末冶金材料科学与工程, 1999, 4(3): 189-194. Liu Yong, Huang Baiyun, He Yuehui, Yang Bing. Manufacturing TiAl based alloy through elemental powder metallurgy process [J]. Powder Metallurgy Materials Science and Engineering, 1999, 4(3): 189-194.
[21]  乔亚霞. 电场加压辅助燃烧合成技术及电场的作用研究 [J]. 江苏陶瓷, 2002, 35(2): 8-11. Qiao Yaxia. FAPAS technology and investigation on the mechanism [J]. Jiangsu Ceramics, 2002, 35(2): 8-11.
[22]  孟庆森, 辛立军, 陈少平, Munir Z A. 电场激活燃烧合成(TiB2)PNi/Ni3Al/Ni功能梯度材料 [J]. 复合材料学报, 2009, 26(1): 80-85. Meng Qingsen, Xin Lijun, Chen Shaoping, Munir Z A. Synthesis of (TiB2)PNi/Ni3Al/Ni gradient material via field-activated combustion [J]. Acta Materiae Compositae Sinica, 2009, 26(1): 80-85.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133