全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

层合轧压SMAT纳米化304不锈钢材料渐进损伤模拟

, PP. 205-212

Keywords: 纳米结构,断裂韧度,强度,有限元分析,数值建模

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于表面机械研磨处理技术(SMAT)和温轧工艺,可以加工出具有高强度和理想韧性的层合纳米化结构材料。为了研究层合轧压SMAT纳米化304不锈钢材料的变形行为及随后的损伤起始与演化过程,采用内聚有限元方法,建立了用于预测该材料力学性能的有限元模型。基于该模型,评估了材料中纳米晶层性质,包括法向内聚强度、切向内聚强度、损伤演化断裂能和体积含量对材料整体强度和韧性的影响。通过比较数值仿真结果与实验结果,验证了模型的合理性和准确性。同时预测结果表明,增加纳米晶层的内聚强度和减小其断裂能都能提高材料的韧性;增加纳米晶层的体积含量,材料的整体韧性降低,但强度增加。

References

[1]  Valiev R Z, Alexandrov I V, Zhu Y T, Lowe T C. Paradox of strength and ductility in metals processed by severe plastic deformation [J]. J Mater Res, 2002, 17(1): 5-8.
[2]  Chen A Y, Zhang J B, Lu J, Lun W, Song H W. Necking propagated deformation behavior of layer-structured steel prepared by co-warm rolled surface nanocrystallized 304 stainless steel [J]. Mater Lett, 2007, 61(30): 5191-5193.
[3]  Chen A Y, Li D F, Zhang J B, Song H W, Lu J. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scripta Mater, 2008, 59(6): 579-582.
[4]  Fischer G, Li V C. Effect of fiber reinforcement on the response of structural members [J]. Eng Frac Mech, 2007, 74(1/2): 258-272.
[5]  Lepech M D, Li V C. Large-scale processing of engineered cementitious composites [J]. ACI Mater J, 2008, 105(4): 358-366.
[6]  李成虎, 燕 瑛. z-pin增强复合材料T型接头层间性能的建模与分析 [J]. 复合材料学报, 2010, 27(6): 152-157. Li Chenghu, Yan Ying. Modeling and analysis of z-pin reinforcing in through-thickness direction of composite T-joint [J]. Acta Materiae Compositae Sinica, 2010, 27(6): 152-157.
[7]  朱炜垚, 许希武. 复合材料层合板低速冲击损伤的有限元模拟 [J]. 复合材料学报, 2010, 27(6): 200-207. Zhu Weiyao, Xu Xiwu. Finite element simulation of low velocity impact damage on composite laminates [J]. Acta Materiae Compositae Sinica, 2010, 27(6): 200-207.
[8]  Guo X, Leung A Y T, Chen A Y, Ruan H H, Lu J. Investigation of non-local cracking in layered stainless steel with nanostructured interface [J]. Scripta Materialia, 2010, 63(4): 403-406.
[9]  崔 浩, 李玉龙, 刘元镛, 郭嘉平, 许秋莲. 基于粘聚区模型的含填充区复合材料接头失效数值模拟 [J]. 复合材料学报, 2010, 27(2): 161-168. Cui Hao, Li Yulong, Liu Yuanyong, Guo Jiaping, Xu Qiulian. Numerical simulation of composites joints failure based on cohesive zone model [J]. Acta Materiae Compositae Sinica, 2010, 27(2): 161-168.
[10]  泮世东, 吴林志, 孙雨果. 含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式 [J]. 复合材料学报, 2007, 24(6): 121-127. Pan Shidong, Wu Linzhi, Sun Yuguo. End compression failure of honeycomb sandwich panels containing interfacial debonding [J]. Acta Materiae Compositae Sinica, 2007, 24(6): 121-127.
[11]  喻溅鉴, 周储伟. 复合材料疲劳分层的界面单元模型 [J]. 复合材料学报, 2009, 26(6): 167-172. Yu Jianjian, Zhou Chuwei. Interface element model for fatigue delamination analysis of composites [J]. Acta Materiae Compositae Sinica, 2009, 26(6): 167-172.
[12]  孔 斌, 叶 强, 陈普会, 柴亚南. 复合材料整体加筋板轴压后屈曲失效表征 [J]. 复合材料学报, 2010, 27(5): 150-155. Kong Bin, Ye Qiang, Chen Puhui, Chai Ya'nan. Post-buckling failure characterization of an integrated stiffened composite panel under uniaxial compression [J]. Acta Materiae Compositae Sinica, 2010, 27(5): 150-155.
[13]  Foulk J W III, Johnson G C, Klein P A, Ritchie R O. On the toughening of brittle materials by grain bridging: Promoting intergranular fracture through grain angle, strength, and toughness [J]. J Mech Phys Sol, 2008, 56(6): 2381-2400.
[14]  Yu R C, Ruiz G, Chaves E W V. A comparative study between discrete and continuum models to simulate concrete fracture [J]. Eng Fract Mech, 2008, 75(1): 117-127.
[15]  Yang Z J, Su X T, Chen J F, Liu G H. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials [J]. International Journal of Solids and Structures, 2009, 46(17): 3222-3234.
[16]  Barenblatt G I. The formation of equilibrium cracks during brittle fracture: General ideas and hypotheses, axially-symmetric cracks [J]. Applied Mathematics and Mechanics, 1959, 23(3): 622-636.
[17]  Dugdale D S. Yielding of steel sheets containing slits [J]. Journal of Mechanics of Physics and Solids, 1960, 8(2): 100-104.
[18]  Needleman A. Continuum model for void nucleation by inclusion debonding [J]. J Appl Mech, 1987, 54(3): 525-531.
[19]  Chen X H, Lu J, Lu L, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel [J]. Scripta Mater, 2005, 52(10): 1039-1044.
[20]  Lin Y, Lu J, Wang L, Xu T, Xue Q. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasmanitrided AISI 321 stainless steel [J]. Acta Materialia, 2006, 54(20): 5599-5605.
[21]  Arifvianto B, Mahardika M, Dewo P, Iswanto P T, Salim U A. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L [J]. Materials Chemistry and Physics, 2011, 125(3): 418-426.
[22]  Chan H L, Ruan H H, Chen A Y, Lu J. Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment [J]. Acta Materialia, 2010, 58(15): 5086- 5096.
[23]  Wen M, Liu G, Gu J F, Guan W M, Lu J. The tensile properties of titanium processed by surface mechanical attrition treatment [J]. Surface and Coatings Technology, 2008, 202(19): 4728-4733.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133