Valiev R Z, Alexandrov I V, Zhu Y T, Lowe T C. Paradox of strength and ductility in metals processed by severe plastic deformation [J]. J Mater Res, 2002, 17(1): 5-8.
[2]
Chen A Y, Zhang J B, Lu J, Lun W, Song H W. Necking propagated deformation behavior of layer-structured steel prepared by co-warm rolled surface nanocrystallized 304 stainless steel [J]. Mater Lett, 2007, 61(30): 5191-5193.
[3]
Chen A Y, Li D F, Zhang J B, Song H W, Lu J. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scripta Mater, 2008, 59(6): 579-582.
[4]
Fischer G, Li V C. Effect of fiber reinforcement on the response of structural members [J]. Eng Frac Mech, 2007, 74(1/2): 258-272.
[5]
Lepech M D, Li V C. Large-scale processing of engineered cementitious composites [J]. ACI Mater J, 2008, 105(4): 358-366.
[6]
李成虎, 燕 瑛. z-pin增强复合材料T型接头层间性能的建模与分析 [J]. 复合材料学报, 2010, 27(6): 152-157. Li Chenghu, Yan Ying. Modeling and analysis of z-pin reinforcing in through-thickness direction of composite T-joint [J]. Acta Materiae Compositae Sinica, 2010, 27(6): 152-157.
Guo X, Leung A Y T, Chen A Y, Ruan H H, Lu J. Investigation of non-local cracking in layered stainless steel with nanostructured interface [J]. Scripta Materialia, 2010, 63(4): 403-406.
[9]
崔 浩, 李玉龙, 刘元镛, 郭嘉平, 许秋莲. 基于粘聚区模型的含填充区复合材料接头失效数值模拟 [J]. 复合材料学报, 2010, 27(2): 161-168. Cui Hao, Li Yulong, Liu Yuanyong, Guo Jiaping, Xu Qiulian. Numerical simulation of composites joints failure based on cohesive zone model [J]. Acta Materiae Compositae Sinica, 2010, 27(2): 161-168.
[10]
泮世东, 吴林志, 孙雨果. 含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式 [J]. 复合材料学报, 2007, 24(6): 121-127. Pan Shidong, Wu Linzhi, Sun Yuguo. End compression failure of honeycomb sandwich panels containing interfacial debonding [J]. Acta Materiae Compositae Sinica, 2007, 24(6): 121-127.
[11]
喻溅鉴, 周储伟. 复合材料疲劳分层的界面单元模型 [J]. 复合材料学报, 2009, 26(6): 167-172. Yu Jianjian, Zhou Chuwei. Interface element model for fatigue delamination analysis of composites [J]. Acta Materiae Compositae Sinica, 2009, 26(6): 167-172.
[12]
孔 斌, 叶 强, 陈普会, 柴亚南. 复合材料整体加筋板轴压后屈曲失效表征 [J]. 复合材料学报, 2010, 27(5): 150-155. Kong Bin, Ye Qiang, Chen Puhui, Chai Ya'nan. Post-buckling failure characterization of an integrated stiffened composite panel under uniaxial compression [J]. Acta Materiae Compositae Sinica, 2010, 27(5): 150-155.
[13]
Foulk J W III, Johnson G C, Klein P A, Ritchie R O. On the toughening of brittle materials by grain bridging: Promoting intergranular fracture through grain angle, strength, and toughness [J]. J Mech Phys Sol, 2008, 56(6): 2381-2400.
[14]
Yu R C, Ruiz G, Chaves E W V. A comparative study between discrete and continuum models to simulate concrete fracture [J]. Eng Fract Mech, 2008, 75(1): 117-127.
[15]
Yang Z J, Su X T, Chen J F, Liu G H. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials [J]. International Journal of Solids and Structures, 2009, 46(17): 3222-3234.
[16]
Barenblatt G I. The formation of equilibrium cracks during brittle fracture: General ideas and hypotheses, axially-symmetric cracks [J]. Applied Mathematics and Mechanics, 1959, 23(3): 622-636.
[17]
Dugdale D S. Yielding of steel sheets containing slits [J]. Journal of Mechanics of Physics and Solids, 1960, 8(2): 100-104.
[18]
Needleman A. Continuum model for void nucleation by inclusion debonding [J]. J Appl Mech, 1987, 54(3): 525-531.
[19]
Chen X H, Lu J, Lu L, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel [J]. Scripta Mater, 2005, 52(10): 1039-1044.
[20]
Lin Y, Lu J, Wang L, Xu T, Xue Q. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasmanitrided AISI 321 stainless steel [J]. Acta Materialia, 2006, 54(20): 5599-5605.
[21]
Arifvianto B, Mahardika M, Dewo P, Iswanto P T, Salim U A. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L [J]. Materials Chemistry and Physics, 2011, 125(3): 418-426.
[22]
Chan H L, Ruan H H, Chen A Y, Lu J. Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment [J]. Acta Materialia, 2010, 58(15): 5086- 5096.
[23]
Wen M, Liu G, Gu J F, Guan W M, Lu J. The tensile properties of titanium processed by surface mechanical attrition treatment [J]. Surface and Coatings Technology, 2008, 202(19): 4728-4733.