全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

轴向运动黏弹性夹层板的多模态耦合横向振动

, PP. 219-225

Keywords: 黏弹性夹层板,轴向运动,Kelvin-Voigt模型,横向振动

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于薄板小挠度理论和Kelvin-Voigt黏弹性本构方程,建立了轴向运动黏弹性夹层板横向振动控制方程,研究了其横向振动特性。采用一阶和二阶Galerkin截断得到夹层板横向振动的特征方程,讨论了两种夹心层所占总厚度比率下轴向运动速度对其横向振动特性的影响。研究表明:在未超过临界速度前,无论一阶还是二阶截断,在定性描述系统特征上二者相同,但一阶截断不适合描述轴向运动速度超过临界速度的情形;对四边简支黏弹性夹层板,临界速度和发生耦合模态颤振的速度随着夹心层比率的减少逐渐增大。

References

[1]  李永强, 李锋, 何永亮. 四边固支铝基蜂窝夹层板弯曲自由振动分析[J]. 复合材料学报, 2011, 28(3): 210-216.
[2]  Li Yongqiang, Li Feng, He Yongliang. Flexural vibration analysis of honeycomb sandwich plate with completely clamped support[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 210-216.
[3]  王慧彩. 黏弹性阻尼夹层板动力特性分析及模态实验研究[J]. 船舶学报, 2005(5): 6-11.
[4]  Wang Huicai. Dynamic performance analysis and mode experimental study on viscid elastic damp interlayer plate[J]. Ship and Boat, 2005(5): 6-11.
[5]  沈顺根, 冷文浩. 黏弹性线性复合结构动力特性分析[J]. 中国造船, 1996(2): 44-52.
[6]  Shen Shungen, Leng Wenhao. Dynamic analysis of viscoelastic linear composite structure[J]. Ship Building of China, 1996(2): 44-52.
[7]  李映辉, 林松, 高庆. 约束阻尼板优化设计方法[J]. 重庆工学院学报, 2007, 21(1): 1-6.
[8]  Li Yinghui, Lin Song, Gao Qing. An optimization design method for constrained plate[J]. Journal of Chongqing Institute of Technology, 2007, 21(1): 1-6.
[9]  Mote Jr C D. A study of band saw vibration[J]. Journal of the Franklin Institue, 1965, 279(6): 430-444.
[10]  Mote Jr C D. Dynamic stability of axially moving band[J]. Journal of the Franklin Institue, 1968, 285(5): 329-346.
[11]  Mote Jr C D. Dynamic stability of axially moving materials[J]. Shock and Vibration Digest, 1972, 4(4): 2-11.
[12]  Chen L Q, Yang X D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports[J]. European Journal of Mechanics A: Solids, 2006, 25(6): 996-1008.
[13]  Chen L Q. Analysis and control of transverse vibrations of axially moving strings[J]. Applied Mechanics Reviews, 2005, 58(2): 91-116.
[14]  Chen L Q, Zu J W, Wu J. Dynamic response of the parametrically excited axially moving string constituted by the boltzmann superposition principle[J]. Acta Mechanics, 2003, 162: 143-155.
[15]  Chen L Q, Zhao W J. A numerical method for simulating transverse vibrations of an axially moving string[J]. Applied Mathematics and Computation, 2005, 160: 411-422.
[16]  Chen L Q, Yang X D. Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term galerkin truncation[J]. Chaos, Solitons and Fractals, 2006, 27(3): 748-757.
[17]  周银锋, 王忠民. 轴向运动黏弹性板的横向振动特性[J]. 应用数学与力学, 2007, 28(2): 191-199.
[18]  Zhou Yinfeng, Wang Zhongmin. Transverse vibration characteristics of axially moving viscoelastic plate[J]. Applied Mathematics and Mechanics, 2007, 28(2): 191-199.
[19]  高正, 杨晓东. 轴向运动黏弹性板横向振动分析的有限差分法[J]. 沈阳航空工业学院学报, 2009, 26(3): 14-18.
[20]  Gao Zheng, Yang Xiaodong. Finite difference method of transverse vibration characteristics of an axially moving viscoelastic plates[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2009, 26(3): 14-18.
[21]  Eun H B, Wang M S, Park W J, et al.Lateral stability verification of a canard air plane with and without a vertical panel[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2003, 20(2): 125-133.
[22]  Hatami S, Ronagh H R, Azhari M. Exact free vibration analysis of axially moving viscoelastic plates[J]. Computers and Structures, 2008, 86: 1738-1746.
[23]  徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133