全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离子液体微乳液中纳米AgCl的合成及AgCl/poly(MMA-co-AM)杂化膜的渗透汽化分离

, PP. 42-49

Keywords: 离子液体表面活性剂,反相微乳液,纳米AgCl粒子,杂化膜,渗透汽化

Full-Text   Cite this paper   Add to My Lib

Abstract:

以离子液体氯化-1-十二烷基甲基咪唑(C12mimCl)为表面活性剂,甲基丙烯酸甲酯(MMA)和丙烯酰胺(AM)混合物为油相构筑的反相微乳液合成AgCl纳米粒子。通过微乳液聚合制备AgCl/poly(MMA-co-AM)杂化膜,用于苯-环己烷混合物的渗透汽化分离。利用紫外-可见吸收光谱(UV-Vis)和透射电镜(TEM)分析AgCl纳米粒子的形貌及结构,利用XRD和SEM分析了杂化膜中AgCl粒子的形貌及结构,通过杂化膜的苯-环己烷混合物(质量分数50%,30℃)的渗透汽化实验分析了杂化膜的分离性能。结果表明:纳米AgCl粒子的平均粒径和粒子数随微乳液中AgNO3浓度(cAgNO3)的增大明显增加;增加微乳液中C12mimCl浓度(cC12mimCl),有利于形成数量较多、平均粒径较小的纳米AgCl粒子;AgCl/poly(MMA-co-AM)杂化膜中AgCl粒子粒径较小,且均匀分散于poly(MMA-co-AM)基材中;随着cAgNO3的增加,杂化膜的渗透通量明显增大,分离因子先增大后减小;而随cC12mimCl的增加,杂化膜的分离因子持续增大,渗透通量表现出先增大后减小的趋势;杂化膜的分离因子最高可达5.0,渗透通量约为490g·m-2·h-1,表现出较好的分离性能。

References

[1]  Deng L Y, Kim T J, Hagg M B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane [J]. J Membr Sci, 2009, 340: 154-163.
[2]  Tang X Y, Weisbrod N. Colloid-facilitated transport of lead in natural 698 discrete fractures [J]. Environmental Pollution, 2009, 157: 2266-2274.
[3]  Burns R L, Koros W J. Defining the challenges for C3H6/C3H8 separation using polymeric membranes [J]. J Membr Sci, 2003, 211: 299-309.
[4]  Kim J H, Min B R, Won J, et al. Effect of the polymer matrix on the formation of silver nanoparticles in polymer-silver salt complex membranes [J]. J Polym Sci Part B: Polym Phys, 2006, 44(8): 1168-1178.
[5]  Shen J N, Zheng X C, Ruan H M, et al. Preparation inorganic-organic hybrid membranes and its sorption performance of cyclohexane/cyclohexene [J]. J Membr Sci, 2007, 304: 118-124.
[6]  Koh J H, Kang S W, Park J T, et al. Synthesis of silver halide nanocomposites templated by amphiphilic graft copolymer and their use as olefin carrier for facilitated transport membranes [J]. J Membr Sci, 2009, 339: 49-56.
[7]  吴礼光, 项 雯, 杜春慧. F127反相微乳液中纳米AgCl粒子的可控合成和AgCl/F127-PMMA有机/无机杂化膜的研究 [J]. 无机化学学报, 2011, 27(1): 61-65. Wu Liguang, Xiang Wen, Du Chunhui. Synthesis of AgCl nanoparticles in F127 microemulsion and study of AgCl/F127-PMMA organic/inorganic hybird membranes [J]. J Chinese Journal of Inorganic Chemistry, 2011, 27(1): 61-65.
[8]  Teramoto M, Takeuchi N, Maki T, et al. Ethylene/ethane separation by facilitated transport membrane accompanied by permeation of aqueous silver nitrate solution [J]. Separation and Purification Technology, 2002, 28: 117-124.
[9]  Mun S H, Kang S W, Cho J S, et al. Enhanced olefin carrier activity of clean surface silver nanoparticles for facilitated transport membranes [J]. J Membr Sci, 2009, 332: 1-5.
[10]  Kang S W, Hong J, Park J H, et al. Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport [J]. J Membr Sci, 2008, 32: 90-93.
[11]  Joo S H, Kim J H, Kang S W, et al. Propylene sorption and coordinative interactions for poly(N-vinyl pyrrolidone-co-vinyl acetate)/silver salt complex membranes [J]. J Polym Sci Part B: Polym Phys, 2007, 45: 2263-2269.
[12]  Jose G T, Elisa V, Elvira G. Synthesis and characterization of Co@Ag core-shell nanoparticles [J]. J Nanopart Res, 2010, 12: 2189-2199.
[13]  江 增, 吴礼光, 周志军. 反相微乳液中AgCl纳米粒子的可控合成与AgCl/GMA-MMA-AMPS共聚物有机-无机杂化膜的研究 [J]. 高等学校化学学报, 2011, 32(1): 10-15. Jiang Zeng, Wu Liguang, Zhou Zhijun. Systhesis of AgCl nanoparticles in W/O microemulsion and study of AgCl/GMA-MMA-AMPS copolymer organic-inorganic hybrid membranes [J]. Chemical Journal of Chinese Universities, 2011, 32(1): 10-15.
[14]  Margarita S D, Magali B C S. A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method [J]. J Nanopart Res, 2009, 11: 1823-1829.
[15]  张锁江, 刘晓敏, 姚晓倩, 等. 离子液体的前沿、 进展及应用 [J]. 中国科学: 化学, 2009, 39: 1134-1144. Zhang Suojiang, Liu Xiaomin, Yao Xiaoqian, et al. Frontiers, progresses and applications of ionic liquids [J]. Science in China Series B: Chemical, 2009, 39: 1134-1144.
[16]  Husein M M, Rodil E, Vera J H. Preparation of AgBr nanoparticles in microemulsions via reaction of AgNO3 with CTAB counterion [J]. J Nanopart Res, 2007, 9: 787-796.
[17]  Chen Z Z, Yan F, Qiu J M, et al. Sustainable polymerizations in recoverable microemulsions [J]. Langmuir, 2010, 26: 3803- 3806.
[18]  Lu J, Yan F, Texter J. Advanced applications of ionic liquids in polymer science [J]. Prog Polym Sci, 2009, 34: 431-448.
[19]  Rabe C, Koetz J. CTAB-based microemulsions with ionic liquids [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2010, 354(1/2/3): 261-267.
[20]  Zhang W Z, Qiao X L, Chen J G. Synthesis of nanosilver colloidal particles in water/oil microemulsion [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2007, 299: 22-28.
[21]  Yan F, Texter J. Surfactant ionic liquid-based microemulsions for polymerization [J]. Chem Commun, 2006, 25: 2696-2700.
[22]  孙 磊, 刘爱心, 黄红莹, 等. 水溶性银纳米颗粒的制备及抗菌性能 [J]. 物理化学学报, 2011, 27(3): 722-728. Sun Lei, Liu Aixin, Huang Hongying, et al. Preparation and antibacterial properties of water-soluble Ag nanoparticles [J]. Acta Physic-Chimica Sinica, 2011, 27(3): 722-728.
[23]  Garcia-Torres J, Vallés E, Gómez E. Synthesis and characterization of Co@Ag core-shell nanoparticles [J]. J Nanopart Res, 2010, 12(6): 2189-2199.
[24]  叶 震, 刘 丽, 陈 勇, 等. 膜法烯烃/烷烃气体分离的研究进展 [J]. 膜科学与技术, 2003, 23(3): 42-47. Ye Zhen, Liu Li, Chen Yong, et al. Research progesses of olefin/paraffin gas separation based on membrane technology [J]. Membrane Science and Technology, 2003, 23(3): 42-47.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133