Khare R, Bose S. Carbon nanotube based composites-A review [J]. Journal of Minerals & Materials Characterization & Engineering, 2005, 4(1): 31-46.
[4]
Cheng Q F, Wang J P, Wen J J, et al. Carbon nanotube/epoxy composites fabricated by resin transfer molding [J]. Carbon, 2010, 48(1): 260-266.
[5]
Gonnet P, Liang Z Y, Eun S C, et al. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites [J]. Current Applied Physics, 2006, 6(1): 119-122.
[6]
Lopes P E, van Hattum F, Pereira C M C, et al. High CNT content composites with CNT Buckypaper and epoxy resin matrix: Impregnation behavior composite production and characterization [J]. Composite Structures, 2010, 92(6): 1291-1298.
[7]
Ashrafi B, Guan J W, Mirjalili V, et al. Correlation between Young’s modulus and impregnation quality of epoxy-impregnated SWCNT buckypaper [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1184-1191.
[8]
Cheng Q F, Bao J W, Park J G, et al. High mechanical performance composite conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites [J]. Advanced Functional Material, 2009, 19(20): 3219-3225.
[9]
Xu G H, Zhang Q, Zhou W P, et al. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array [J]. Applied Physics A, 2008, 92(3): 531-539.
[10]
Pham G T, Park Y B, Wang S R, et al. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets [J]. Nanotechnology, 2008, 19(32): 1-8.
[11]
Colemana J N, Blau W J, Dalton A B, et al. Improving the mechanical properties of single-walled carbonnanotube sheets by intercalation of polymeric adhesives [J]. Applied Physics Letters, 2003, 82(11): 1682-1684.
[12]
Song L, Zhang H, Zhang Z, et al. Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites [J]. Composites: Part A, 2007, 38(2): 388-392.
[13]
Wang Z, Liang Z Y, Wang B, et al. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites [J]. Composites: Part A, 2004, 35(10): 1225-1232.
[14]
Guo J H, Minaie B, Wang B, et al. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites [J]. Computational Materials Science, 2004, 31(3/4): 225-236.
[15]
Dai Z S, Shi F H, Zhang B Y, et al. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion [J]. Applied Surface Science, 2011, 257(15): 6980-6985.
[16]
马全胜, 李 敏, 孙志杰, 等. 固化阶段环氧树脂表面能及其极性变化的表征 [J]. 复合材料学报, 2009, 26(5): 74-79. Ma Quansheng, Li Min, Sun Zhijie, et al. Surface energy and polar component evolution of epoxy resin systems after gelation [J]. Acta Materiae Compositae Sinica, 2009, 26(5): 74-79.
[17]
Ci L J, Bai J B. The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness [J]. Composites Science and Technology, 2006, 66(3/4): 599-603.
[18]
Wu S. Polymer interface and adhesion [M]. New York: Dekker, 1982.
[19]
朱黎黎, 张佐光, 李 敏, 等. 工艺温度下树脂与纤维的接触 角及其粘附作用研究 [J]. 复合材料学报, 2010, 27(5): 41-47. Zhu Lili, Zhang Zuoguang, Li Min, et al. Contact angle and action of adhesion between epoxy resin and fibers at processing temperatures [J]. Acta Materiae Compositae Sinica, 2010, 27(5): 41-47.