全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二维平纹机织复合材料弹性性能预测的域分解方法

, PP. 197-205

Keywords: 机织复合材料,网格重合法,域分解,弹性性能,多节点约束

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了预测二维平纹机织复合材料的弹性性能,提出了基于有限元重合网格法的域分解方法。域分解方法与传统代表体元法的有限元建模不同,前者不再建立精细的纤维与基体模型,而是分别建立二维平纹机织复合材料单胞的整体域与纤维域,整体域是真实基体体积与纤维体积的叠加,两区域网格独立剖分,互不影响。采用MSC.Nastran中的多节点约束在纤维节点与基体节点之间建立位移协调来模拟纤维和基体单元的位移函数关系,实现了纤维域和基体域的耦合计算。研究表明,域分解方法大大简化了机织复合材料细观力学建模的复杂性,降低了建模时间,采用域分解方法预测的二维平纹机织复合材料弹性常数与试验值吻合较好,充分说明了该预测模型与方法的正确性。研究了不同纤维体积分数下,域分解方法预测二维平纹机织复合材料的弹性常数的变化趋势,结果表明,随纤维体积分数增加,模量呈上升趋势,泊松比呈降低趋势。

References

[1]  梁 军, 陈晓峰. 多向编织复合材料的力学性能研究 [J]. 力学进展, 1999, 29(2): 197-210. Liang Jun, Chen Xiaofeng. Study of mechanical properties of multi direction braided composite [J]. Advances in Mechanics, 1999, 29(2): 197-210.
[2]  Derek H, Clyne T W. An introduction to composite materials [M]. Cambridge: Cambridge University Press, 1996.
[3]  Ishikawa T, Chou T W. One dimensional micromechanical analysis of woven fabric composite [J]. AIAA Journal, 1983, 21: 1714-1721.
[4]  Ishikawa T, Chou T W. Stiffness and strength behavior of woven fabric composites [J]. Journal of Materials Science, 1982, 17(11): 3211-3220.
[5]  Ishikawa T, Matsushima M, Hayashi Y, et al. Experimental confirmation of the theory of elastic moduli of fabric composites [J]. Journal of Composite Materials, 1985, 19(9): 443-458.
[6]  Lee J W, Charles H, Harris E. A micromechanics model for the effective Yong’s modulus of a piecewise isotropic laminate with wavy patters [J]. Journal of Composite Materials, 1985, 19(9): 443-458.
[7]  王 瑞, 王建坤, 武 玲. 平纹织物复合材料的弹性模量预测 [J]. 复合材料学报, 2002, 19(1): 90-94. Wang Rui, Wang Jiankun, Wu Ling. Prediction for elastic properties of plain weave fabric composites [J]. Acta Materiae Compositae Sinica, 2002, 19(1): 90-94.
[8]  王立朋, 燕 瑛. 编织复合材料弹性性能的细观分析及试验研究 [J]. 复合材料学报, 2004, 21(4): 152-156. Wang Lipeng, Yan Ying. Micro analysis and experimental study of the elastic properties of braided composites structure [J]. Acta Materiae Compositae Sinica, 2004, 21(4): 152-156.
[9]  Tan P, Tong L, Steven G P. Modeling for predicting the mechanical properties of textile composite-A review [J]. Composites Part A: Applied Science and Manufacturing, 1997, 28: 903-922.
[10]  Crookston J J, Long A C, Jones I A. A summary review of mechanical properties prediction methods for textile reinforced polymer composites [J]. Proceedings of the Mechanical Engineering: Part L-Journal of Materials Design and Applications, 2005, 219(2): 91-109.
[11]  张 超, 许希武. 二维二轴编织复合材料几何模型及弹性性能预测 [J]. 复合材料学报, 2010, 27(5): 129-135. Zhang Chao, Xu Xiwu. Geometrical model and elastic properties prediction of 2D biaxial braided composites [J]. Acta Materiae Compositae Sinica, 2010, 27(5): 129-135.
[12]  张 超, 许希武. 二维二轴1×1编织复合材料细观结构模型及力学性能有限元分析 [J]. 复合材料学报, 2011, 28(6): 215-222. Zhang Chao, Xu Xiwu. Microstructure model and finite element analysis of mechanical properties of 2D 1×1 biaxial braided composites [J]. Acta Materiae Compositae Sinica, 2011, 28(6): 215-222.
[13]  Mote C D. Global-local finite element [J]. International Journal for Numerical Method in Engineering, 1971, 3: 565-574.
[14]  Fish J. The S-version of the finite element method [J]. Composites and Structures, 1992, 43(3): 539-547.
[15]  Fish J, Guttal R. The S-version of the finite element method for laminated composites [J]. International Journal for Numerical Method in Engineering, 1996, 39: 3641-3662.
[16]  Park J W. Efficient finite element analysis using mesh superposition technique [J]. Finite Elements in Analysis and Design, 2003, 39: 619-638.
[17]  Ohyama D, Kurashiki T. Estimation of mechanical behavior of braided composites based on mesh superposition method [C]//Proceeding of 18th ICCM. Jeju Island, Korea: [s.n.], 2011.
[18]  谢 伟, 黄其青, 张允涛. 二维有限元重合网格法网格特性研究 [J]. 西北工业大学学报, 2010, 28: 497-502. Xie Wei, Huang Qiqing, Zhang Yuntao. Exploring mesh characteristics of S-version finite element method(S-FEM) in two-dimensional linear elastic fracture mechanics [J]. Journal of Northwestern Polytechnical University, 2010, 28: 497-502.
[19]  范学领, 孙 秦, 菊池正纪. 重合网格法在复合材料分层问题中的应用 [J]. 宇航材料工艺, 2008(5): 17-20. Fan Xueling, Sun Qin, Masanori Kikuchi. Mixed-mode delamination analysis of CFRP by using element overlap technique [J]. Aerospace Materials & Technology, 2008(5): 17-20.
[20]  Jiang W G, Hallett S R. Development of domain superposition technique for the modeling of woven fabric composites [C]//Camanho P P. ECCOMAS Thematic Conference on Mechanical Response of Composites. Porto, Portugal: [s.n.], 2007: 12-14.
[21]  Ito M. An analytical and experimental study of strength and failure behavior of plain weave composites [J]. Journal of Composite Material, 1998, 32: 1-30.
[22]  Barbero E J. Finite element continuum damage modeling of plain weave reinforced composites [J]. Composites Part B: Engineering, 2006, 37, 137-147.
[23]  Cytec. Cytec engineered materials [EB/OL]. (2010) [2011-10-14]. http://www.cytec.com/engineered-materials/index.htm.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133