全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米粒子在SiC/PTFE复合材料中分散三维仿真与分形表征

, PP. 144-151

Keywords: 纳米SiC/PTFE复合材料,三维仿真,均匀分布,偏聚分布,盒维数,力学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了从理论上探讨纳米粒子在基体材料中的分布规律,以纳米SiC质量分数为3%、5%、7%、9%的SiC/PTFE(聚四氟乙烯)复合材料为例,根据纳米SiC的半径(25nm)、密度(3.2g/cm3)、质量分数和基体材料的密度(2.2g/cm3),以10-12g为质量单位、25nm:1像素为比例尺,建立了纳米粒子在基体中均匀/偏聚分布的三维仿真模型,基于其盒维数定量表征了不同团聚/偏聚程度的纳米粒子的分散度,并进行了力学实验验证。结果表明:均匀分布下随着纳米SiC粒子半径的不断增加,或体积分数的不断减小,其盒维数也逐渐减小;当SiC粒子半径超过100nm时,不再具有分形特性。偏聚分布下随着纳米SiC粒子(半径为50nm)间距的不断加大,或体积分数的不断减小,或层状、线状、团状分布的依次改变,其盒维数也逐渐减小;相同体积分数下偏聚分布的盒维数低于均匀分布;当粒子间距超过450nm时,不再具有分形特性。均匀分布下纳米SiC/PTFE复合材料的力学性能测试结果与其三维仿真模型的盒维数线性相关(|R|>0.9)。盒维数可定量表征纳米粒子的分散度,并可用于预测纳米复合材料的宏观性能。

References

[1]  Lai S Q, Li T S, Liu X J. The tribological properties of PTFE filled with thermally treated nano-attapulgite [J]. Tribology International, 2006, 39: 541-547.
[2]  Xiang D H, Gu C J. A study on the friction and wear behavior of PTFE filled with ultra-fine kaolin particulates [J]. Materials Letters, 2006, 60: 689-692.
[3]  Friedrich K, Zhang Z, Schlarb A K. Effect of various fillers on the sliding wear of polymer composites [J]. Composites Science and Technology, 2005, 65: 2329-2343.
[4]  Burris D L, Sawyer W G. Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles [J]. Wear, 2006, 260(7/8): 915-918.
[5]  Su F H, Zhang Z Z, Liu W M. Friction and wear behavior of hybrid glass/PTFE fabric composite reinforced with surface modified nanometer ZnO [J]. Wear, 2008, 265: 311-318.
[6]  秦湘阁, 刘国权. 多晶体晶粒尺度三维组织建模及可视化 [J]. 北京科技大学学报, 2001, 23(6): 519-522. Qin Xiangge, Liu Guoquan. 3-D Modeling and visualization of polycrystalline material microstructure at grain scale with time scale [J]. Journal of University of Science and Technology Beijing, 2001, 23(6): 519-522.
[7]  秦湘阁, 刘国权. 基于Monte Carlo Potts方法的三维大尺度晶粒组织仿真模型及定量表征 [J]. 北京科技大学学报, 2004, 26(1): 49-52. Qin Xiangge, Liu Guoquan. Large-scale 3-D model and quantitative characterization of grain microstructure based on Monte Carlo Potts simulation [J]. Journal of University of Science and Technology Beijing, 2004, 26(1): 49-52.
[8]  秦湘阁, 刘国权. 颗粒增强复合材料显微组织的计算机仿真 [J].佳木斯大学学报: 自然科学版, 2001, 19(1): 1-4. Qin Xiangge, Liu Guoquan. Computer simulation of microstructures of particle reinforced composites [J]. Journal of Jiamusi University: Natural Science Edition, 2001, 19(1): 1-4.
[9]  潘琼瑶, 贺鹏飞, 郑百林, 等. 颗粒增强复合材料热性能的数值模拟研究 [J]. 太原理工大学学报, 2005, 36(6): 663-665. Pan Qiongyao, He Pengfei, Zheng Bailin, et al. Numerical simulation of particle reinforced composites on thermal properties [J]. Journal of Taiyuan University of Technology, 2005, 36(6): 663-665.
[10]  孙永立, 于朝阳, 史然峰, 等. WC、 ZrO2、 Cr2O3和Al2O3陶瓷颗粒/镍合金复合涂层微观组织结构的分形 [J]. 复合材料学报, 2005, 22(3): 85-91. Sun Yongli, Yu Zhaoyang, Shi Ranfeng, et al. Fractal characteristic of microstructure of WC, ZrO2, Cr2O3 and Al2O3 ceramic particles/nickel alloy composite coatings [J]. Acta Materiae Compositae Sinica, 2005, 22(3): 85-91.
[11]  何 飞, 赫晓东, 李 垚. 掺杂二氧化硅干凝胶孔结构的分形特性[J]. 复合材料学报, 2007, 24(1): 81-85. He Fei, He Xiaodong, Li Yao. Fractal characteristic of the porous structure of the additive silica xerogel [J]. Acta Materiae Compositae Sinica, 2007, 24(1): 81-85.
[12]  聂 鹏, 王新鑫, 高 霁, 等. 纳米复合材料分散相分散均匀性的分形表征 [J]. 北京航空航天大学学报, 2009, 35(7): 852-855. Nie Peng, Wang Xinxin, Gao Ji, et al. Fractal characterization of uniformity of discrete phase in nano composites [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7): 852-855.
[13]  Woignier T, Primera J, Hafidi Alaoui A, et al. Mechanical behaviour of nano composite aerogels [J]. Journal of Sol-Gel Science and Technology, 2011, 58(2): 385-393.
[14]  Sarkisov P D, Butusov O B, Meshalkin V P, et al. Computer-aided method of analysis of nanocomposite structure on the basis of calculations of isolines of fractal dimensionality [J]. Theoretical Foundations of Chemical Engineering, 2010, 44(6): 838-843.
[15]  Tan L, Wang G, Dong W J, et al. Template-assisted synthesis of polymer-Li composites with fractal patterns [J]. Australian Journal of Chemistry, 2011, 64(2): 190-196.
[16]  Amir S, Mohamed N S, Hashim A S A. Simulation model of the fractal patterns in ionic conducting polymer films [J]. Central European Journal of Physics, 2010, 8(1): 150-156.
[17]  胡卫峰, 宣益民, 李 强. 纳米流体聚集结构的模拟及其分维数分析 [J]. 南京理工大学学报, 2002, 26(3): 229-234. Hu Weifeng, Xuan Yimin, Li Qiang. Simulation and fractal analysis of nano particles aggregation [J]. Journal of Nanjing University of Science and Technology, 2002, 26(3): 229-234.
[18]  何春霞, 陆德荣, 肖声明. 纳米颗粒填充聚四氟乙烯基复合材 料的分散性表征 [J]. 上海交通大学学报, 2011, 45(9): 1411-1415. He Chunxia, Lu Derong, Xiao Shengming. Dispersion characterization of PTFE composites filled with different nano particles [J]. Journal of Shanghai Jiaotong University, 2011, 45(9): 1411-1415.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133