全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纤维增强SiO2气凝胶复合材料压缩性能和变形机制

, PP. 225-230

Keywords: SiO2气凝胶,高温压缩,蠕变,显微结构,试样收缩

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据热防护系统的特征载荷,研究了气凝胶的室温、高温压缩和压缩蠕变性能。研究表明纤维增强SiO2气凝胶的压缩曲线可划分为三个阶段:线性阶段、屈服阶段和密实化阶段。相比纯气凝胶,该材料具有较高的强度、良好的断裂韧性。该材料存在明显的室温和高温蠕变行为。室温条件下240h内的蠕变历程可划分为三个阶段,在168h以后蠕变变形量达到稳定状态,基本不再继续增加。对比试样在试验前、热处理后和蠕变试验后的显微结构发现,气凝胶基体的密实化是加热后试样收缩和影响气凝胶蠕变性能的主要因素。

References

[1]  Friche J, Emmerling A. Aerogels[J]. Journal of the American Ceramic Society, 1992, 75(8): 2027-2036.
[2]  Friche J, Emmering A. Aerogels: Preparation, properties, applications[J]. Structure and Bonding, 1992, 77: 37-87.
[3]  Hrubesh L W. Aerogels: The world’s lightest solids[J]. Chemistry and Industry, 1990, 24: 824-827.
[4]  Kislter S S. Coherent expanded aerogels[J]. Nature, 1931, 127(3211): 741.
[5]  Hrubesh L W. Aerogel application[J]. Journal of Non-Crystalline Solids, 1998, 225: 335-342.
[6]  Gurav Jyoti L, Jung In-Keun, Park Hyung-Ho, et al. Silica aerogel: Synthesis and applications[J]. Journal of Nanomaterials, 2010, 2010: 1-11.
[7]  Fricke J, Tillotson T. Aerogel: Production, characterization, and applications[J]. Thin Solids Films, 1997, 297(1/2): 212-223.
[8]  Smith D M, Maskara A, Boes U. Aerogel-based thermal insulation[J]. Journal of Non-Crystalline Solids, 1998, 225: 254-259.
[9]  Schmidt M, Schwertfeger M. Applications for silica aerogel products[J]. Journal of Non-Crystalline Solids, 1998, 225: 364-368.
[10]  Koravos J J, Miller T M, Fesmire J E, et al. Nanogel aerogel as load-bearing inslation for cryogenic systems//Weisend J E. Transactions of the Cryogenic Engineer Conference. New York: American Institute of Physics, 2010: 921-927.
[11]  冯 坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J]. 国防科技大学学报, 2010, 32(1): 40-44. Feng Jian, Gao Qingfu, Feng Junzong, et al. Preparation and properties of fiber reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology, 2010, 32(1): 40-44.
[12]  Guptaa N, Riccib W. Processing and compressive properties of aerogel/epoxy composites[J]. Journal of Materials Processing Technology, 2008, 198(1-3): 178-182.
[13]  Scherer G W, Smith D M, Qiu X, et al. Compression of aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 316-320.
[14]  Parmenter K E, Milstein F. Mechanical properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 1998, 223(3): 179-189.
[15]  Yang Jie, Li Shukui, Yan Lili, et al. Compressive behaviors and morphological changes of resorcinol-formaldehyde aerogel at high strain rates[J]. Microporous and mesoporous material, 2010, 133(1-3): 134-140.
[16]  Roy S, Shimpi N, Katti A, et al. Mechanical characterization and modeling of isocyanate, AIAA 2006-1770. Rhode Island: The American Institute of Aeronautics and Astronautics, 2006.
[17]  de la Rosa-Fox N, Toledo Femandez J A, Morales-Florez V. Creep and relaxation behavior of hybrid organic-inorganic aerogels[J]. Key Engineering Materials, 2010, 423: 167-172.
[18]  Takahashi Ryoji, Sato Satoshi, Sodesawa Toshiaki, et al. Bending strength of silica gel with bimodal pores: Effect of variation in mesopore structure[J]. Materials Research Bulletin, 2005, 40(7): 1148-1156.
[19]  冯 坚, 高庆福, 张长瑞, 等. SiO2溶胶配比对气凝胶隔热复合材料力学性能的影响[J]. 复合材料学报, 2012, 27(6): 179-183. Feng Jian, Gao Qingfu, Zhang Changrui, et al. Effect of SiO2 sol proportion on the mechanical properties of aerogel insulation composites[J]. Acta Materiae Compositae Sinica, 2012, 27(6): 179-183.
[20]  卢 斌, 宋 淼, 卢 辉, 等. 常压干燥法制备TiO2气凝胶[J]. 复合材料学报, 2012, 29(3): 127-133. Lu Bin, Song Miao, Lu Hui, et al. TiO2 aerogel prepared by ambient pressure drying[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 127-133.
[21]  杨海龙, 孔祥明, 曹恩祥, 等. 聚合物改性SiO2气凝胶的常压干燥制备及表征[J]. 复合材料学报, 2012, 29(2): 1-9. Yang Hailong, Kong Xiangming, Cao Enxiang, et al. Preparation and characterization of polymer modified silica aerogels dried under ambient pressure[J]. Acta Materiae Compositae Sinica, 2012, 29(2): 1-9.
[22]  European Committee for Standardization. DIN EN 12291 Mechanical prosperities of ceramic composites at high temperature at atmospheric pressure[S]. Berlin, Germany: European Committee for Standardization, 2003.
[23]  王小东. 纳米多孔SiO2气凝胶隔热复合材料应用基础研究. 长沙: 国防科技大学, 2006. Wang Xiaodong. Base research on the application of nanoporous SiO2 aerogel based thermal insulation composite. Changsha: National University of Defense Technology, 2006.
[24]  Evans A G, Zok F W. The physics and mechanics of fiber-reinforced brittle matrix composites[J]. Journal of Material Science, 1994, 29(15): 3858-3896.
[25]  Deng Z S, Wang J, Wu A M, et al. High strength SiO2 aerogel insulation[J]. Journal of Non-Crystalline Solids, 1998, 225: 101-104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133