全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

狭长磁电弹性体中Ⅲ型半无限裂纹的场强度因子

, PP. 192-197

Keywords: 狭长磁电弹性复合材料,半无限裂纹,复变函数方法,场强度因子,能量释放率

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过引入合适的保角映射,利用复变函数方法研究了裂纹面上受反平面剪应力和面内磁电载荷共同作用下狭长磁电弹性体中半无限裂纹的断裂行为,给出了磁电全非渗透型边界条件下裂纹尖端场强度因子和能量释放率的解析解。当狭长体高度趋于无限大时,可得到无限大磁电弹性体中半无限裂纹的解析解。若不考虑磁场或电场作用,所得解可退化为已知解。通过数值算例,分析了裂纹面上受载长度、狭长体高度以及磁、电和机械载荷对能量释放率的影响。

References

[1]  Liu J X, Liu X L, Zhao Y B. Green’s function for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack[J]. International Journal of Engineering Science, 2001, 39(12): 1405-1418.
[2]  Gao C F, Kessler H, Balke H. Crack problems in magnetoelectroelastic Ⅰ: Exact solution of a crack[J]. International Journal of Engineering Science, 2003, 41(9): 969-981.
[3]  Gao C F, Kessler H, Balke H. Crack problems in magnetoelectroelastic Ⅱ: General solution of collinear cracks[J]. International Journal of Engineering Science, 2003, 41(9): 983-994.
[4]  Wang B L, Mai Y W. Crack tip field in piezoelectric/piezomagnetic media[J]. European Journal of Mechanics A, 2003, 22(4): 591-602.
[5]  Song Z F, Sih G C. Crack initiation behavior in a magnetoelectroelastic composite under in-plane deformation[J]. Theoretical and Applied Fracture Mechanics, 2003, 39(3): 189-207.
[6]  Wang B L, Mai Y W. Fracture of piezoelectromagnetic materials[J]. Mechanics Research Communication, 2004, 31(1): 65-73.
[7]  Gao C F, Tong P, Zhang T Y. Fracture mechanics for a mode Ⅲ crack in a magnetoelectroelastic solid[J]. International Journal of Solids and Structures, 2004, 41(24/25): 6613-6629.
[8]  Hu K Q, Li G Q. Electro-magneto-elastic analysis of a piezoelectromagnetic strip with a finite crack under longitudinal shear[J]. Mechanics of Materials, 2005, 37(9): 925-934.
[9]  Zhong X C, Li X F. Closed-form solution for an eccentric anti-plane shear crack normal to the edges of a magnetoelectroelastic strip[J]. Acta Mechanica, 2006, 186(1-4): 1-15.
[10]  Zhao M H, Wang H, Yang F, et al. A magnetoelectroelastic medium with an elliptical cavity under combined mechanical-electric-magnetic loading[J]. Theoretical and Applied Fracture Mechanics, 2006, 45(3): 227-237.
[11]  Zhou Z G, Zhang P W, Wu L Z. The closed form solution of a mode-Ⅰ crack in the piezoelectric/piezomagnetic materials[J]. International Journal of Solids and Structures, 2007, 44(2): 419-435.
[12]  Zhong X C. Analysis of a dielectric crack in a magnetoelectroelastic layer[J]. International Journal of Solids and Structures, 2009, 46(24): 4221-4230.
[13]  Singh B M, Rokne J, Dhaliwal R S. Closed-form solutions for two anti-plane collinear cracks in a magnetoelectroelastic layer[J]. European Journal of Mechanics A, 2009, 28(3): 599-609.
[14]  Guo J H, Lu Z X. Anti-plane analysis of multiple cracks originating from a circular hole in a magnetoelectroelastic solid[J]. International Journal of Solids and Structures, 2010, 47(14/15): 1847-1856.
[15]  Rogowski B. The mode Ⅲ cracks emanating from an elliptical hole in the piezo-electro-magneto-elastic materials[J]. Arch Appl Mech, 2011, 81(11): 1607-1620.
[16]  Guo J H, Lu Z X, Han H T, et al. Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material[J]. International Journal of Solids and Structures, 2009, 46(21): 3799-3809.
[17]  Guo J H, Liu P, Lu Z X, et al. Anti-plane analysis of semi-infinite crack in piezoelectric strip[J]. Appl Math Mech: Engl Ed, 2011, 32(1): 75-82.
[18]  Lu Z X, Liu P, Guo J H. Exact solutions of two semi-infinite collinear cracks in piezoelectric strip[J]. Appl Math Mech: Engl Ed, 2011, 32(11): 1399-1406.
[19]  袁泽帅, 郭俊宏, 卢子兴. 压电复合材料中幂函数型曲线裂纹的反平面问题[J]. 复合材料学报, 2012, 29(1): 136-143. Yuan Zeshuai, Guo Junhong, Lu Zixing. Anti-plane analysis of power function curved cracks in piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 136-143.
[20]  谢海峰, 饶秋华, 王 志. 反平面剪切(Ⅲ 型)加载下脆性岩石的断口分析[J]. 岩石力学与工程学报, 2007, 26(9): 1832-1839. Xie Haifeng, Rao Qiuhua, Wang Zhi. Fracture morphology analysis of brittle rock under anti-plane shear (mode Ⅲ) loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1832-1839.
[21]  Wang B L, Mai Y W. Impermeable crack, permeable crack assumptions, which one is more realistic?[J]. Journal of Applied Mechanics, 2004, 71(4): 575-578.
[22]  Fu R, Zhang T Y. Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics[J]. J Am Ceram Soc, 2000, 83(5): 1215-1218.
[23]  Wang Y, Su Y J, Chu W Y, et al. Effect of eletric field, stress and environment on delayed fracture of a PZT-5 ferroelectric ceramic[J]. Science China Physics, Mechanics & Astronomy, 2005, 48(1): 89-100.
[24]  Fan T Y. Exact solutions of semi-infinite crack in a strip[J]. Chinese Physics Letters, 1990, 44(11): 402-405.
[25]  Li X F. Dynamic analysis of a cracked magnetoelectroelastic medium under anti-plane mechanical and in-plane electric and magnetic impacts[J]. International Journal of Solids and Structures, 2005, 42(11/12): 3185-3205.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133