全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑纤维方向分布的玻纤增强PP复合材料拉伸性能

, PP. 53-58

Keywords: 玻纤增强,汽车仪表板,拉伸模量,方向张量,各向异性

Full-Text   Cite this paper   Add to My Lib

Abstract:

纤维方向及其分布对玻纤增强PP复合材料的力学特性具有至为关键的影响。提出了一种快速获取纤维数量及每根纤维方向的方法。通过引入方向张量,利用Moldflow软件进行玻纤增强PP树脂注塑成型模拟获得纤维方向的平均分布,结合显微方法观察判断特定点的纤维沿厚度方向的分层情况及定量判断纤维方向的分布。对轿车玻璃纤维增强注塑仪表板的纤维方向相对一致处取与纤维方向呈0°、45°、90°的样条,通过拉伸实验测得拉伸模量,利用所提出的方法研究了仪表板内玻纤方向的分布及其对拉伸模量的影响。研究结果表明:玻纤增强注塑仪表板的力学性能是各向异性的,其沿厚度方向纤维按方向大致可分为三层。

References

[1]  冯美斌. 汽车轻量化技术中新材料的发展及应用[J]. 汽车工程, 2006, 28(3): 213-220. Feng Meibin. Development and applications of new materials in automotive light weighting technologies[J]. Automotive Engineering, 2006, 28(3): 213-220.
[2]  Kim E, Park J, Jo S. A study on fiber orientation during the injection molding of fiber-reinforced polymeric composites: Comparison between image processing results and numerical simulation[J]. Journal of Materials Processing Technology, 2001, 111(1): 225-232.
[3]  Yang C, Huang H X, Li K. Investigation of fiber orientation states in injection-compression molded short-fiber-reinforced thermoplastics[J]. Polymer Composites, 2010, 31(11): 1899-1908.
[4]  Vincent M, Giroud T, Clarke A, et al. Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics[J]. Polymer, 2005, 46(17): 6719-6725.
[5]  Thomason J. Structure-property relationships in glass-reinforced polyamide Ⅰ: The effects of fiber content[J]. Polymer Composites, 2006, 27(5): 552-562.
[6]  Thomason J. Structure-property relationships in glass reinforced polyamide Ⅱ: The effects of average fiber diameter and diameter distribution[J]. Polymer Composites, 2007, 28(3): 331-343.
[7]  Lauke B, Fu S Y. Strength anisotropy of misaligned short-fibre-reinforced polymers[J]. Composites Science and Technology, 1999, 59(5): 699-708.
[8]  郭建兵, 薛 斌, 何 敏, 等. 短玻纤增强丙烯腈-丁二烯-苯乙烯共聚物的制备及性能[J]. 复合材料学报, 2011, 28(1): 31-36. Guo Jianbing, Xue Bin, He Min, et al. Preparation and properties of the short glass fiber reinforced ABS composites[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 31-36.
[9]  孙红玲, 牛景新, 刘文涛, 等. 长玻纤增强尼龙66复合材料性能的研究[J]. 塑料工业, 2012, 40(5): 81-84. Sun Hongling, Niu Jingxin, Liu Wentao, et al. Study on properties of long glass fiber reinforced PA66 composites[J]. China Plastics Industry, 2012, 40(5): 81-84.
[10]  徐松林, 唐志平, 胡元育, 等. 纤维增强水泥基复合材料压剪破坏的细观实验研究[J]. 复合材料学报, 2005, 22(1): 92-101. Xu Songlin, Tang Zhiping, Hu Yuanyu, et al. Meso experimental investigation of fiber reinforced cementitious composites under compression and shear loading[J]. Acta Materiae Compositae Sinica, 2005, 22(1): 92-101.
[11]  罗吉祥, 唐 春, 郭 然. 纤维增强复合材料界面脱层和基体裂纹的模拟分析[J]. 复合材料学报, 2009, 26(6): 201-209. Luo Jixiang, Tang Chun, Guo Ran. Numerical simulations of interfacial debonding and matrix cracking in fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2009, 26(6): 201-209.
[12]  Bay R S, Tucker C L. Stereological measurement and error estimates for three-dimensional fiber orientation[J]. Polymer Engineering and Science, 1992, 32(4): 240-253.
[13]  Advani A G, Tucker C L. The use of tensors to describe and predict fiber orientation in short fiber composites[J]. Journal of Rheology, 1987, 31(8): 751-784.
[14]  Carlsson L A, Gillespie J W. Micro-models for composite materials particles and discontinuous fibers[J]. Delaware Composites Design Encyclopedia, 1989, 2: 91-142.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133