全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑气动弹性约束的复合材料支撑机翼优化设计

, PP. 194-199

Keywords: 复合材料,气动弹性约束,支撑机翼,屈曲,颤振,混合算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于遗传-敏度混合算法对复合材料支撑机翼开展考虑气动弹性约束的优化设计,并与常规机翼构型进行比较。在严重载荷状态下,以结构质量最小化为目标,以翼尖变形、屈曲稳定性和颤振速度为约束,设计复合材料机翼铺层和支撑结构参数,并研究不同支撑点位置对于优化设计结果的影响。结果表明,复合材料支撑机翼构型能大幅减少弯曲方向上的铺层材料,有明显的减重优势。支撑点位置对于结构质量、屈曲稳定性和扭转刚度分布有较大影响,支撑结构的屈曲破坏在复合材料支撑机翼的结构设计中要引起重视。

References

[1]  Gern F H, Ko A, Sulaeman E, et al. Passive load alleviation in the design of a strut-braced wing transonic transport aircraft, AIAA 2000-4826[R]. 2000.
[2]  Sulaeman E, Kapania R K, Haftka R T. Effect of compressive force on strut-braced wing response, AIAA 2001-1611[R]. 2001.
[3]  Sulaeman E, Kapania R K, Haftka R T. Parametric studies of flutter speed in a strut-braced wing, AIAA 2002-1487[R]. 2002.
[4]  Gur O, Bhatia M, Schetz J A, et al. Design optimization of a truss-braced-wing transonic transport aircraft[J]. Journal of Aircraft, 2010, 47(6): 1907-1917.
[5]  Gur O, Bhatia M, Mason W H, et al. Development of framework for truss-braced wing conceptual MDO, AIAA 2010-2754[R]. 2010.
[6]  Gur O, Schetz J A, Mason W H, et al. Aerodynamic considerations in the design of truss-braced-wing aircraft[J]. Journal of Aircraft, 2011, 48(3): 919-939.
[7]  Bhatia M, Kapania R K, Haftka R T. Structural and aeroelastic characteristics of truss-braced wings-A parametric sudy[J]. Journal of Aircraft, 2012, 49(1): 302-310.
[8]  朱自强, 王晓璐, 吴宗成, 等. 支撑机翼跨声速民机的多学科优化设计[J].航空学报, 2009, 30(1): 1-11. Zhu Ziqiang, Wang Xiaolu, Wu Zongcheng, et al. Multi-disciplinary optimization of strut-braced wing transonic transport[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 1-11.
[9]  万志强, 杨 超. 大展弦比复合材料机翼气动弹性优化[J].复合材料学报, 2005, 22(3): 145-149. Wan Zhiqiang, Yang Chao. Aeroelastic optimization of a high-aspect-ratio composite wing[J]. Acta Materiae Compositae Sinica, 2005, 22(3): 145-149.
[10]  刘鸿文. 材料力学: 下册[M]. 第3版. 北京: 高等教育出版社, 2002: 151-153. Liu Hongwen. Mechanics of materials: B[M]. 3rd ed. Beijing: Higher Education Press, 2002: 151-153.
[11]  牛春匀. 实用飞机结构应力分析及尺寸设计[M]. 北京: 航空工业出版社, 2009: 388-400. Niu Chunyun. Airframe stress analysis and sizing[M]. Beijing: Aviation Industry Press, 2009: 388-400.
[12]  杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1): 1-12. Du Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12.
[13]  Shirk M H, Hertz T J, Weisshaar T A. Aeroelastic tailoring-theory, practice, and promise[J]. Journal of Aircraft, 1986, 23(1): 6-18.
[14]  Grasmeyer J M. Multidisciplinary design optimization of a transonic strut-braced wing aircraft, AIAA 99-0010[R]. 1999.
[15]  Gern F H, Naghshineh-Pour A H, Sulaeman E, et al. Structural wing sizing for multidisciplinary design optimization of a strut-braced wing[J]. Journal of Aircraft, 2001, 38(1): 154-163.
[16]  Wan Z Q, Yang C, Zou C Q. Design studies of aeroelastic tailoring of forward-swept composite aircraft using hybrid genetic algorithm, AIAA 2003-1491[R]. 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133