Xu C, Wang X, Zhu J. Graphene-metal particle nanocomposites[J]. Journal of Physical Chemistry C, 2008, 112(50): 19841-19845.
[2]
Wang B, Wu X L, Shu C Y, et al. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(47): 10661-10664.
[3]
Xu Z P, Buehler M J. Interface structure and mechanics between graphene and metal substrates: a first-principles study[J]. Journal of Physics: Condensed Matter, 2010, 22(48): 485301.
[4]
Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
[5]
Singh V, Joung D, Zhai L, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8): 1178-1271.
[6]
韩同伟, 贺鹏飞, 骆 英, 等. 石墨烯力学性能研究进展[J]. 力学进展, 2011, 41(3): 279-293. Han Tongwei, He Pengfei, Luo Ying, et al. Research progress in the mechanical properties of graphene[J]. Advances in Mechanics, 2011, 41(3): 279-293.
[7]
Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12): 3884-3890.
[8]
卫保娟, 肖 潭, 李雄俊, 等. 石墨烯与多壁碳纳米管增强环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2012, 29(5): 53-60. Wei Baojuan, Xiao Tan, Li Xiongjun, et al. Preparation and properties of graphene and MWCNTs reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 53-60.
[9]
莫尊理, 郭瑞斌, 陈 红, 等. 石墨/树状大分子复合材料的分子动力学模拟[J]. 复合材料学报, 2007, 24(4): 58-62. Mo Zunli, Guo Ruibin, Chen Hong, et al. Moelcular dynamics simulation study on graphite/dendrimers composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 58-62.
[10]
Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55(1): 41-64.
[11]
Liu C B, Wang K, Luo S L, et al. Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films[J]. Small, 2011, 7(9): 1203-1206.
[12]
Shi X H, Yin Q F, Wei Y J. A theoretical analysis of the surface dependent binding, peeling and folding of graphene on single crystal copper[J]. Carbon, 2012, 50: 3055-3063.
[13]
Pilmpton S. Fast parallel algorithms for short-range molecular-dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
[14]
Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations[J]. Physical Review B, 2001, 63(22): 224106.
[15]
Brenner D W, Shenderova O A, Harrison J A, et al. A second-generation reactive empirical bond order (REBO) potentials energy expression for hydrocarbons[J]. Journal of Physics: Condensed Mater, 2002, 14(4): 783-802.
[16]
Maekawa K, Itoh A. Friction and tool wear in nano-scale machining-a molecular dynamics approach[J]. Wear, 1995, 188(1): 115-122.
[17]
Dziedzic J, Bobrowski M, Rybicki J. Hybrid quantum-classical approach for atomistic simulation of metallic systems[J]. Physical Review B, 2011, 83(22): 224114.
[18]
Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics, 1984, 81: 511-519.
[19]
Yang Z Y, Lu Z X. Atomistic simulation of the mechanical behaviors of co-continuous Cu/SiC nanocomposites[J]. Composites Part B: Engineering, 2013, 44(1): 453-457.
[20]
Zhou M. A new look at the atomic level virial stress: on continuum-molecular system equivalence[J]. Preceding of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2003, 459(2037): 2347-2392.
[21]
Li J. AtomEye: an efficient atomistic configuration viewer[J]. Modeling and Simulation in Materials Science and Engineering, 2003, 11(2): 173-177.
[22]
Halpin J C, Tsai S W. Environmental factors in composites materials design[R]. U.S. Air Force Technical Report AFML TR, 1967: 67-423.
[23]
Liang J J, Hang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Advanced Functional Material, 2009, 19(14): 1-6.
[24]
Gong L, Kinloch I A, Young B J, et al. Interfacial stress transfer in a graphene monolayer nanocomposite[J]. Advanced Materials, 2010, 22(24): 2694-2697.
[25]
Liu Y, Xie B, Zhang Z, et al. Mechanical properties of graphene papers[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(4): 591-605.
[26]
Kim K T, Cha S I, Hong S H, et al. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science and Engineering A, 2006, 430(1): 27-33.
[27]
Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites[J]. Carbon, 2012, 50(7): 2417-2423.