全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯/Cu复合材料力学性能的分子动力学模拟

, PP. 152-157

Keywords: 石墨烯/Cu复合材料,分子动力学,力学性能,界面,强度

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合嵌入原子方法(EAM)、反应经验键序(REBO)作用势和Morse势函数,采用分子动力学方法研究了石墨烯/Cu复合材料的弹性性能和变形机制。分子动力学计算得到复合材料的弹性模量随石墨烯体积分数的增加而线性增加,这与Halpin-Tsai模型的预测趋势吻合。此外,石墨烯的加入同时也提供了复合材料的屈服强度。通过比较预制裂纹在单晶铜和石墨烯/Cu复合材料中的动态扩展,发现石墨烯的加入显著抑制了裂纹的扩展,材料的变形主要表现为沿石墨表面的滑移。石墨烯很大程度上提高了复合材料的塑性变形能力。

References

[1]  Xu C, Wang X, Zhu J. Graphene-metal particle nanocomposites[J]. Journal of Physical Chemistry C, 2008, 112(50): 19841-19845.
[2]  Wang B, Wu X L, Shu C Y, et al. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(47): 10661-10664.
[3]  Xu Z P, Buehler M J. Interface structure and mechanics between graphene and metal substrates: a first-principles study[J]. Journal of Physics: Condensed Matter, 2010, 22(48): 485301.
[4]  Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
[5]  Singh V, Joung D, Zhai L, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8): 1178-1271.
[6]  韩同伟, 贺鹏飞, 骆 英, 等. 石墨烯力学性能研究进展[J]. 力学进展, 2011, 41(3): 279-293. Han Tongwei, He Pengfei, Luo Ying, et al. Research progress in the mechanical properties of graphene[J]. Advances in Mechanics, 2011, 41(3): 279-293.
[7]  Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12): 3884-3890.
[8]  卫保娟, 肖 潭, 李雄俊, 等. 石墨烯与多壁碳纳米管增强环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2012, 29(5): 53-60. Wei Baojuan, Xiao Tan, Li Xiongjun, et al. Preparation and properties of graphene and MWCNTs reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 53-60.
[9]  莫尊理, 郭瑞斌, 陈 红, 等. 石墨/树状大分子复合材料的分子动力学模拟[J]. 复合材料学报, 2007, 24(4): 58-62. Mo Zunli, Guo Ruibin, Chen Hong, et al. Moelcular dynamics simulation study on graphite/dendrimers composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 58-62.
[10]  Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55(1): 41-64.
[11]  Liu C B, Wang K, Luo S L, et al. Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films[J]. Small, 2011, 7(9): 1203-1206.
[12]  Shi X H, Yin Q F, Wei Y J. A theoretical analysis of the surface dependent binding, peeling and folding of graphene on single crystal copper[J]. Carbon, 2012, 50: 3055-3063.
[13]  Pilmpton S. Fast parallel algorithms for short-range molecular-dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
[14]  Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations[J]. Physical Review B, 2001, 63(22): 224106.
[15]  Brenner D W, Shenderova O A, Harrison J A, et al. A second-generation reactive empirical bond order (REBO) potentials energy expression for hydrocarbons[J]. Journal of Physics: Condensed Mater, 2002, 14(4): 783-802.
[16]  Maekawa K, Itoh A. Friction and tool wear in nano-scale machining-a molecular dynamics approach[J]. Wear, 1995, 188(1): 115-122.
[17]  Dziedzic J, Bobrowski M, Rybicki J. Hybrid quantum-classical approach for atomistic simulation of metallic systems[J]. Physical Review B, 2011, 83(22): 224114.
[18]  Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics, 1984, 81: 511-519.
[19]  Yang Z Y, Lu Z X. Atomistic simulation of the mechanical behaviors of co-continuous Cu/SiC nanocomposites[J]. Composites Part B: Engineering, 2013, 44(1): 453-457.
[20]  Zhou M. A new look at the atomic level virial stress: on continuum-molecular system equivalence[J]. Preceding of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2003, 459(2037): 2347-2392.
[21]  Li J. AtomEye: an efficient atomistic configuration viewer[J]. Modeling and Simulation in Materials Science and Engineering, 2003, 11(2): 173-177.
[22]  Halpin J C, Tsai S W. Environmental factors in composites materials design[R]. U.S. Air Force Technical Report AFML TR, 1967: 67-423.
[23]  Liang J J, Hang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Advanced Functional Material, 2009, 19(14): 1-6.
[24]  Gong L, Kinloch I A, Young B J, et al. Interfacial stress transfer in a graphene monolayer nanocomposite[J]. Advanced Materials, 2010, 22(24): 2694-2697.
[25]  Liu Y, Xie B, Zhang Z, et al. Mechanical properties of graphene papers[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(4): 591-605.
[26]  Kim K T, Cha S I, Hong S H, et al. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science and Engineering A, 2006, 430(1): 27-33.
[27]  Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites[J]. Carbon, 2012, 50(7): 2417-2423.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133