全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

苯胺-SrTi(C2O4)2颗粒制备及其电流变性能

, PP. 81-87

Keywords: 电流变液,苯胺,SrTi(C2O4)2颗粒,形貌,极性分子

Full-Text   Cite this paper   Add to My Lib

Abstract:

用沉淀法制备了苯胺-草酸氧钛锶(SrTi(C2O4)2)颗粒。FTIR分析表明,苯胺已引入到SrTi(C2O4)2颗粒的表面;XRD分析表明,苯胺-SrTi(C2O4)2颗粒为含少量结晶的无定形态。采用SEM观察颗粒的形貌,结果表明,随反应体系中苯胺与钛原子物质的量比naniline/nTi的增大,苯胺-SrTi(C2O4)2颗粒由近似球状(naniline/nTi=0)变为多面体状(naniline/nTi=2),而后变为棒状与团簇状颗粒的混合体系(naniline/nTi=3)。以苯胺-SrTi(C2O4)2颗粒为分散相制备颗粒质量分数为66.7%电流变液,电流变性能测试结果表明,在naniline/nTi=2时,电流变液具有较高的剪切应力和剪切屈服强度、较大的漏电流密度。苯胺在颗粒制备过程中起控制颗粒形貌的作用,在电流变液体系中起极性分子的作用,其对苯胺-SrTi(C2O4)2电流变液性能的影响是两种效应综合作用的结果。

References

[1]  Wei J H, Zhao L H, Peng S L, et al. Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects[J]. Journal of Sol-Gel Science and Technology, 2008, 47(3): 311-315.
[2]  Cao J G, Shen M, Zhou L W. Preparation and electrorheological properties of triethanolamine-modified TiO2[J]. Journal of Solid State Chemistry, 2006, 179(5): 1565-1568.
[3]  Cheng Y C, Guo J J, Xu G J, et al. Electrorheological property and microstructure of acetamide-modified TiO2 nanoparticles[J]. Colloid Polym Sci, 2008, 286(13): 1493-1497.
[4]  Liu F H, Xu G J, Wu J H, et al. Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles[J]. Colloid Polym Sci, 2010, 288(18): 1739-1744.
[5]  赵 艳, 王宝祥, 赵晓鹏. 改性纳米氧化钛电流变液的制备及其特性[J]. 复合材料学报, 2006, 23(3): 96-102. Zhao Yan, Wang Baoxiang, Zhao Xiaopeng. Synthesis and electrorheological properties of modified TiO2 nanoparticles[J]. Acta Materiae Compositae Sinica, 2006, 23(3): 96-102.
[6]  Qiao Y P, Yin J B, Zhao X P. Oleophilicity and the strong electrorheological effect of surface-modified titanium oxide nano-particles[J]. Smart Materials and Structures, 2007, 16(2): 332-339.
[7]  Cao J G, Shen M, Zhou L W. Preparation and electrorheological properties of triethanolamine-modified TiO2[J]. Journal of Solid State Chemistry, 2006, 179(5): 1565-1568.
[8]  Fan W, Niinist? L. Preparation of strontium titanate using strontium titanyl oxalate as precursor[J]. Materials Research Bulletin, 1994, 29(4): 451-458.
[9]  Gallagher P K, Thomson J. Thermal analysis of some barium and strontium titanyl oxalates[J]. Journal of the American Ceramic Society, 1965, 48(12): 644-647.
[10]  Wang X Z, Shen R, Wen W J, et al. High performance calcium titanate nanoparticle ER fluids[J]. International Journal of Modern Physics B, 2005, 19(7-9): 1110-1113.
[11]  Wu J H, Xu G J, Cheng Y C, et al. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid[J]. Journal of Colloid and Interface Science, 2012, 378(1): 36-43.
[12]  Winslow W M. Induced fibration of suspensions[J]. Journal of Applied Physics, 1949, 20(12): 1137-1140.
[13]  Wang B X, Zhao X P. Preparation of kaolinite/titania coated nanocomposite particles and their electrorheological properties[J]. Journal of Material Chemistry, 2003, 13(9): 2248-2253.
[14]  陆 军, 赵晓鹏. 聚邻苯二胺/蒙脱土纳米复合材料的合成及其电流变效应[J]. 复合材料学报, 2004, 21(4): 8-12. Lu Jun, Zhao Xiaopeng. Electrorheological behavior of poly-o-phenylenediamine/montmorillonite nanocomposite[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 8-12.
[15]  Wen W J, Huang X X, Yang S H, et al. The giant electrorheological effect in suspensions of nanoparticles[J]. Nature Materials, 2003, 2: 727-730.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133